Answer:
In order to be able to solve this problem, you will need to know the value of water's specific heat, which is listed as
c=4.18Jg∘C
Now, let's assume that you don't know the equation that allows you to plug in your values and find how much heat would be needed to heat that much water by that many degrees Celsius.
Take a look at the specific heat of water. As you know, a substance's specific heat tells you how much heat is needed in order to increase the temperature of 1 g of that substance by 1∘C.
In water's case, you need to provide 4.18 J of heat per gram of water to increase its temperature by 1∘C.
What if you wanted to increase the temperature of 1 g of water by 2∘C ?
This will account for increasing the temperature of the first gram of the sample by n∘C, of the the second gramby n∘C, of the third gram by n∘C, and so on until you reach m grams of water.
And there you have it. The equation that describes all this will thus be
q=m⋅c⋅ΔT , where
q - heat absorbed
m - the mass of the sample
c - the specific heat of the substance
ΔT - the change in temperature, defined as final temperature minus initial temperature
In your case, you will have
q=100.0g⋅4.18Jg∘C⋅(50.0−25.0)∘C
q=10,450 J
<span>P*V/T=constant
so P*V= constant*T
if T doesn't change then
P*V= constant
so 150kPa*0.8L=75kPa*xL
xL=150kPa*0.8L/75kPa=1.6L
hope it help</span>
Definition: Cubic centimeter. A cubiccentimetre (cm3) is equal to thevolume of a cube with side length of 1 centimetre. It was the base unit ofvolume of the CGS system of units, and is a legitimate SI unit. It is equal to a millilitre (ml).
Convert ml to cm cubed - Conversion of Measurement Units
Answer:
As the pressure decreases, the amount of oxygen available to breathe also decreases. Atmospheric pressure is an indicator of weather. When a low-pressure system moves into an area, it usually leads to cloudiness, wind, and precipitation. High-pressure systems usually lead to fair, calm weather.