The impulse-momentum theorem
Here is the answer!!!!!!!
Answer:
<h3>After 3seconds</h3>
Explanation:
A supersonic aircraft flies at 3 km altitude at a speed of 1000 m/s on a standard day. How long after passing directly above a ground observer is the sound of the aircraft heard by the ground observer
Using the formula for calculating speed expressed as;
Speed = Distance/Time
Given;
Distance = 3km = 3000m
Speed = 1000m/s
Required
How long after passing directly above a ground observer is the sound of the aircraft heard by the ground observer (Time)
From the formula;
Time = Distance/speed
Time = 3000/1000
Time = 3seconds
Hence the sound of the aircraft is heard after 3 seconds
A) The ball on the small ball is far smaller than the force on the basketball.
B) The total momentum before and after the collision remains constant.
C) We know momentum is conserved so we do:
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
0.1 x 5 + 0.6 x 0 = 0.1 x -4 + 0.6 x v₂
v₂ = 1.5 m/s
Assuming the driver starts slamming the brakes immediately, the car moves by uniformly decelerated motion, so we can use the following relationship

(1)
where
a is the deleceration
S is the distance covered after a time t

is the velocity at time t

is the initial speed of the car
The accident is 80 m ahead of the car, so the minimum deceleration required to avoid the accident is the value of a such that S=80 m and

(the car should stop exactly at S=80 m to avoid the accident). Using these data, we can solve the equation (1) to find a:

And the negative sign means it is a deceleration.