Answer:
The magnetic flux through a loop is zero when the B field is perpendicular to the plane of the loop.
Explanation:
Magnetic flux are also known as the magnetic line of force surrounding a bar magnetic in a magnetic field.
It is expressed mathematically as
Φ = B A cos(θ) where
Φ is the magnetic flux
B is the magnetic field strength
A is the area
θ is the angle that the magnetic field make with the plane of the loop
If B is acting perpendicular to the plane of the loop, this means that θ = 90°
Magnetic flux Φ = BA cos90°
Since cos90° = 0
Φ = BA ×0
Φ = 0
This shows that the magnetic flux is zero when the magnetic field strength B is perpendicular to the plane of the loop.
If all the mass of fuel and oxygen is burned to form gases of combustion, the downward velocity of these gases would be 12,505 m/s.
<h3>
Conservation of linear momentum</h3>
The principle of conservation of linear momentum states that, the total momentum of an isolated system is constant.
The downward velocity of thes gases is calculated as follows;
v1(m1 + m2) = v2(m2)
305(1000 + 25) = v2(25)
312,625 = 25v2
v2 = 312,625/25
v2 = 12,505 m/s
Thus, If all the mass of fuel and oxygen is burned to form gases of combustion, the downward velocity of these gases would be 12,505 m/s.
Learn more about linear momentum here: brainly.com/question/7538238
Answer:
It allows for transportation and other things
Explanation:
Why are you asking this on the physics section
Answer:
h = 18.41 m
Explanation:
Given that,
Mass of a test rocket, m = 11 kg
Its fuel gives it a kinetic energy of 1985 J by the time the rocket engine burns all of the fuel.
According to the law of conservation of energy,
PE = KE = mgh
h is height will the rocket rise

So, the rocket will rise to a height of 18.41 m.
W=Force*Distance
If you just apply force but do not move the brick, no work has been done.