Answer:
impulse acting on it
Explanation:
The impulse is defined as the product between the force applied to an object (F) and the time interval during which the force is applied (
):

We can prove that this is equal to the change in momentum of the object. In fact, change in momentum is given by:

where m is the mass and
is the change in velocity. Multiplying and dividing by
, we get

and since
is equal to the acceleration, a, we have

And since the product (ma) is equal to the force, we have

which corresponds to the impulse.
Answer:
Systems always tend toward a state of decreasing order unless more energy is provided into the system to counteract this tendency.
Answer:
True
Explanation:
The Sun rotates in the counterclockwise (CCW) direction when seen from its north pole. Since, the planets revolve around the Sun because of its gravity, the revolution of all the planets and their moons as seen from the north of the Sun is in CCW direction.
In fact most of the solar system bodies rotate in the same direction that is CCW. Some major exceptions to this are Venus and Uranus.
Almost all the planets and moons were made from the planetary disk around the Sun. Thus, they lie nearly in the same plane.
You may know linear momentum is given by
P= mass.velocity.
Initially car is moving with some velocity so you know initial momentum of the car. Finally it comes to rest i.e final momentum of the car is 0. According to Newton's second law : Force = change in momentum /time. Applying this you'll get answer as 642840N. Hope it helped you. Revert back to me if you have any questions. Please check out the calculation it might be wrong!
Answer:
the final velocity of the car is 59.33 m/s [N]
Explanation:
Given;
acceleration of the car, a = 13 m/s²
initial velocity of the car, u = 120 km/h = 33.33 m/s
duration of the car motion, t = 2 s
The final velocity of the car in the same direction is calculated as follows;
v = u + at
where;
v is the final velocity of the car
v = 33.33 + (13 x 2)
v = 59.33 m/s [N]
Therefore, the final velocity of the car is 59.33 m/s [N]