Hi there! :)

Use the following kinematic equation to solve for the final velocity:

In this instance, the runner started from rest, so the initial velocity is 0 m/s. We can rewrite the equation as:

Plug in the given acceleration and time:

Complete Question
The angular speed of an automobile engine is increased at a constant rate from 1120 rev/min to 2560 rev/min in 13.8 s.
(a) What is its angular acceleration in revolutions per minute-squared
(b) How many revolutions does the engine make during this 20 s interval?
rev
Answer:
a

b

Explanation:
From the question we are told that
The initial angular speed is 
The angular speed after
is 
The time for revolution considered is
Generally the angular acceleration is mathematically represented as

=>
=> 
Generally the number of revolution made is
is mathematically represented as

=> 
=> 
When using the right-hand rule to determine the direction of the magnetic force on a charge, which part of the hand points in the direction that the charge is moving? The answer is <span>thumb.
</span>One way to remember this is that there is one velocity, represented accordingly by the thumb. There are many field lines, represented accordingly by the fingers. The force is in the direction you would push with your palm. The force on a negative charge is in exactly the opposite direction to that on a positive charge. Because the force is always perpendicular to the velocity vector, a pure magnetic field will not accelerate a charged particle in a single direction, however will produce circular or helical motion (a concept explored in more detail in future sections). It is important to note that magnetic field will not exert a force on a static electric charge. These two observations are in keeping with the rule that <span>magnetic fields do no </span>work<span>.</span>
Complete part of Question: What is Jane's (and the vine's) angular speed just before she grabs Tarzan
Answer:
Jane's (and the vine's) angular speed just before she grabs Tarzan, w = 1.267 rad/s
Explanation:
According to the law of energy conservation:
Total change in kinetic energy = Total change in potential energy
Mass of Jane = 60 kg
Mass of the vine = 32 kg
Mass of Tarzan = 72 kg
Height of Tarzan = 5.50 m
Length of the vine = 8.50 m
Jane's change in gravitational potential energy,

Vine's gravitational potential energy,

Vine's Kinetic energy :

Jane's Kinetic energy:


3234 + 862.4 = 2167.5w² + 385.33w²
4096.4 = 2552.83w²
w² = 4096.4/2552.83
w² = 1.605
w = √1.605
w = 1.267 rad/s