Data:
F (force) = ? (Newton)
k (<span>Constant spring force) = 50 N/m
x (</span>Spring deformation) = 15 cm → 0.15 m
Formula:

Solving:



Data:
E (energy) = ? (joule)
k (Constant spring force) = 50 N/m
x (Spring deformation) = 15 cm → 0.15 m
Formula:

Solving:(Energy associated with this stretching)




Answer:
(a) The value of the ratio m₁/m₂ is 0.581
(b) the acceleration of the combined masses is 1.139 m/s²
Explanation:
Given;
The acceleration of force applied to M₁, a₁ = 3.10 m/s²
The same force applied to M₂ has acceleration, a₂ = 1.80 m/s²
Let this force = F
According Newton's second law of motion;
F = ma
(a) the value of the ratio m₁/m₂
since the applied force is same in both cases, M₁a₁ = M₂a₂

(b) the acceleration of m₁ and m₂ combined as one object under the action force F
F = ma


Therefore, the acceleration of the combined masses is 1.139 m/s²
Answer:

Explanation:
From the question we are told that:
Area 
Force 
Generally the equation for Pressure is mathematically given by
Pressure = Force/Area


Generally the equation for Pressure is also mathematically given by

Therefore



Answer:
The frequency would not change because the frequency of a simple pendulum does not depend on mass.
Explanation:
I believe it would be, if I have calculated correctly, 25 degrees C.