Answer:
Step-by-step explanation:
x and 6
6^2 is 36
x^2 is still x^2
now we need to find the square root of their sum
square root of ( 36 + x^2 )
I'm not that sure about this one i think it might be more simplified
<span>Simplifying
(6a + -8b)(6a + 8b) = 0
Multiply (6a + -8b) * (6a + 8b)
(6a * (6a + 8b) + -8b * (6a + 8b)) = 0
((6a * 6a + 8b * 6a) + -8b * (6a + 8b)) = 0
Reorder the terms:
((48ab + 36a2) + -8b * (6a + 8b)) = 0
((48ab + 36a2) + -8b * (6a + 8b)) = 0
(48ab + 36a2 + (6a * -8b + 8b * -8b)) = 0
(48ab + 36a2 + (-48ab + -64b2)) = 0
Reorder the terms:
(48ab + -48ab + 36a2 + -64b2) = 0
Combine like terms: 48ab + -48ab = 0
(0 + 36a2 + -64b2) = 0
(36a2 + -64b2) = 0
Solving
36a2 + -64b2 = 0
Solving for variable 'a'.
Move all terms containing a to the left, all other terms to the right.
Add '64b2' to each side of the equation.
36a2 + -64b2 + 64b2 = 0 + 64b2
Combine like terms: -64b2 + 64b2 = 0
36a2 + 0 = 0 + 64b2
36a2 = 0 + 64b2
Remove the zero:
36a2 = 64b2
Divide each side by '36'.
a2 = 1.777777778b2
Simplifying
a2 = 1.777777778b2
Take the square root of each side:
a = {-1.333333333b, 1.333333333b}</span>
Answer:
slope is equal to rise (going up or down on graph) over run (going left or right)
Step-by-step explanation:
1 = - 
2=
= 2
3. 
4. -
5.
= 
6. -
= - 
Answer: There is sufficient evidence to reject the dealer's claim that the mean price is at least $20,500
Step-by-step explanation:
given that;
n = 14
mean Ж = 19,850
standard deviation S = 1,084
degree of freedom df = n - 1 = ( 14 -1 ) = 13
H₀ : ц ≥ 20,500
H₁ : ц < 20,500
Now the test statistics
t = (Ж - ц) / ( s/√n)
t = ( 19850 - 20500) / ( 1084/√14)
t = -2.244
we know that our degree of freedom df = 13
from the table, the area under the t-distribution of the left of (t=-2.244) and for (df=13) is 0.0215
so P = 0.0215
significance ∝ = 0.05
we can confidently say that since our p value is less than the significance level, we reject the null hypothesis ( H₀ : ц ≥ 20,500 )
There is sufficient evidence to reject the dealer's claim that the mean price is at least $20,500
We are given the equation
y = Ao (0.85)^x
Initially, at x = 0, the value of y is
y = Ao (0.85)^0
y = Ao
If the initial value was $65,000 at the same rate of depreciation, the equation would be
y = 65000 (0.85)^x