kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Answer:
A proportion is the name we give to a statement in which 2 ratios are equal. Proportions are built off of ratios. It is usually written in one of 2 ways
Step-by-step explanation:
The problem can be solved step by step, if we know certain basic rules of summation. Following rules assume summation limits are identical.




Armed with the above rules, we can split up the summation into simple terms:





=> (a)
f(x)=28n-n^2=> f'(x)=28-2n
=> at f'(x)=0 => x=14
Since f''(x)=-2 <0 therefore f(14) is a maximum
(b)
f(x) is a maximum when n=14
(c)
the maximum value of f(x) is f(14)=196
so we have the points of (0,-7),(7,-14),(-3,-19), let's plug those in the y = ax² + bx + c form, since we have three points, we'll plug each one once, thus a system of three variables, and then we'll solve it by substitution.

well, from the 1st equation, we know what "c" is already, so let's just plug that in the 2nd equation and solve for "b".

well, now let's plug that "b" into our 3rd equation and solve for "a".
![\bf -19=9a-3b-7\implies -12=9a-3b\implies -12=9a-3(-1-7a) \\\\\\ -12=9a+3+21a\implies -15=9a+21a\implies -15=30a \\\\\\ -\cfrac{15}{30}=a\implies \blacktriangleright -\cfrac{1}{2}=a \blacktriangleleft \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{and since we know that}}{-1-7a=b}\implies -1-7\left( -\cfrac{1}{2} \right)=b\implies -1+\cfrac{7}{2}=b\implies \blacktriangleright \cfrac{5}{2}=b \blacktriangleleft \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill y=-\cfrac{1}{2}x^2+\cfrac{5}{2}x-7~\hfill](https://tex.z-dn.net/?f=%5Cbf%20-19%3D9a-3b-7%5Cimplies%20-12%3D9a-3b%5Cimplies%20-12%3D9a-3%28-1-7a%29%20%5C%5C%5C%5C%5C%5C%20-12%3D9a%2B3%2B21a%5Cimplies%20-15%3D9a%2B21a%5Cimplies%20-15%3D30a%20%5C%5C%5C%5C%5C%5C%20-%5Ccfrac%7B15%7D%7B30%7D%3Da%5Cimplies%20%5Cblacktriangleright%20-%5Ccfrac%7B1%7D%7B2%7D%3Da%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Band%20since%20we%20know%20that%7D%7D%7B-1-7a%3Db%7D%5Cimplies%20-1-7%5Cleft%28%20-%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%29%3Db%5Cimplies%20-1%2B%5Ccfrac%7B7%7D%7B2%7D%3Db%5Cimplies%20%5Cblacktriangleright%20%5Ccfrac%7B5%7D%7B2%7D%3Db%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20y%3D-%5Ccfrac%7B1%7D%7B2%7Dx%5E2%2B%5Ccfrac%7B5%7D%7B2%7Dx-7~%5Chfill)
A segment parallel to EH is AD
answer
<span>B. AD</span>