Answer:
i and ii
Explanation:
In the aerobic oxidation of glucose, the electrons formed are transferred to O2 after several others transfer reactions like passing through coenzymes NAD+ and FAD
The mole fraction of HNO3 is 0.225
<u>Explanation:</u>
<u>1.</u>Given data
Density = 1.429 /ml
Mass% = 63.01 g HNO3 / 100g of solution
The mass of 63.01 g is in 100 / 1.142 /ml of solution
Or 63.01 g in 55.7 mL
Molarity = 15.39 moles / L
Mass of water in 100g = 100 - 63.01=36.99 g
So 63.01 grams in 36.99 grams of water
So mass of HNO3 in 1000grams of water = 63.01* x 1000 / 36.99 = 1703
Moles of HNO3 in 1000g = 1703 / 63.01 = 27.03 moles
Molality = 27.03 molal (mole / Kg)
Mole fraction = Mole of HN03 / Moles of water + mole of HNO3
Mole of water = 62/ 18 = 3.44
Moles of HNO3 = 63.01 / 63.01 = 1.000
Mole fraction = 1.000 / 3.44 + 1.000 = 0.225
The mole fraction of HNO3 is 0.225
Answer:
The answer to your question is -2855 J
Explanation:
Reaction
2C₂H₆ + 7O₂ ⇒ 4CO₂ + 6H₂O
Formula
Heat of reaction = ΔHrxn = ΣΔHrxn products - ΣΔHrxn reactants
Substitution
ΔHrxn = { 4(-393.5) + 6(-241.8)} - {2(-84.7) + 7(0)}
ΔHrxn = {-1574 -1450.8} - {-169.4}
ΔHrxn = -3024.8 + 169.4
ΔHrxn = -2855.4 J
Answer:
False
Explanation:
While chemical reactions can proceed in the forward direction , they can in fact also proceed in the backward direction too. The direction they would proceed depends majorly on the state of chemical equilibrium at that particular time for that particular chemical reaction.
It should be known that when a chemical reaction proceeds in the forward way, more products are formed and the reactants are used up. If however, the chemical reaction proceed in the backward way, more reactants are formed and the products are used up.
A practical example is in the case of an exothermic reaction. This is one in which heat is released to the surroundings as a result of the reactants being at a higer energy level compared to the product. Now, depending on the prevailing equilibrium constraint, the reaction could proceed forward or backward.
If for example, the temperature is decreased, this is a constraint being applied to the equilibrium state. The chemical reaction would take a shift and will favor the forward reaction and more of the products will be formed. And also of the temperature is increased, it is the backward reaction that is favored