He did not apply the fifty newtons of greater force! Ok it says when it needed to have the greater force of fifty the person only put 10N out of the fifty, and left out 40N, that is why it did not work properly.
Answer:
4600s
Explanation:

For a first order reaction the rate of reaction just depends on the concentration of one specie [B] and it’s expressed as:
![-\frac{d[B]}{dt}=k[B] - - - -\frac{d[B]}{[B]}=k*dt](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BB%5D%7D%7Bdt%7D%3Dk%5BB%5D%20-%20-%20-%20%20-%5Cfrac%7Bd%5BB%5D%7D%7B%5BB%5D%7D%3Dk%2Adt)
If we have an ideal gas in an isothermal (T=constant) and isocoric (v=constant) process.
PV=nRT we can say that P = n so we can express the reaction order as a function of the Partial pressure of one component.
![-\frac{d[P(N_{2}O_{5})]}{P(N_{2}O_{5})}=k*dt](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BP%28N_%7B2%7DO_%7B5%7D%29%5D%7D%7BP%28N_%7B2%7DO_%7B5%7D%29%7D%3Dk%2Adt)
Integrating we get:
![\int\limits^p \,-\frac{d[P(N_{2}O_{5})]}{P(N_{2}O_{5})}=\int\limits^ t k*dt](https://tex.z-dn.net/?f=%5Cint%5Climits%5Ep%20%5C%2C-%5Cfrac%7Bd%5BP%28N_%7B2%7DO_%7B5%7D%29%5D%7D%7BP%28N_%7B2%7DO_%7B5%7D%29%7D%3D%5Cint%5Climits%5E%20t%20k%2Adt)
![-(ln[P(N_{2}O_{5})]-ln[P(N_{2}O_{5})_{o})])=k(t_{2}-t_{1})](https://tex.z-dn.net/?f=-%28ln%5BP%28N_%7B2%7DO_%7B5%7D%29%5D-ln%5BP%28N_%7B2%7DO_%7B5%7D%29_%7Bo%7D%29%5D%29%3Dk%28t_%7B2%7D-t_%7B1%7D%29)
Clearing for t2:
![\frac{-(ln[P(N_{2}O_{5})]-ln[P(N_{2}O_{5})_{o})])}{k}+t_{1}=t_{2}](https://tex.z-dn.net/?f=%5Cfrac%7B-%28ln%5BP%28N_%7B2%7DO_%7B5%7D%29%5D-ln%5BP%28N_%7B2%7DO_%7B5%7D%29_%7Bo%7D%29%5D%29%7D%7Bk%7D%2Bt_%7B1%7D%3Dt_%7B2%7D)
![ln[P(N_{2}O_{5})]=ln(650)=6.4769](https://tex.z-dn.net/?f=ln%5BP%28N_%7B2%7DO_%7B5%7D%29%5D%3Dln%28650%29%3D6.4769)
![ln[P(N_{2}O_{5})_{o}]=ln(760)=6.6333](https://tex.z-dn.net/?f=ln%5BP%28N_%7B2%7DO_%7B5%7D%29_%7Bo%7D%5D%3Dln%28760%29%3D6.6333)

The mass of nitric acid required to make the given solution is 0.0627 g.
The given parameters:
- <em>Volume of the acid, V = 250 mL</em>
- <em>pH of the acid, = 2.4</em>
The hydrogen ion (H⁺) concentration of the nitric acid is calculated as follows;

The molarity of the nitric acid is calculated as follows;

The number of moles of the nitric acid is calculated as follows;

The molar mass of nitric acid is calculated as;

The mass of the nitric acid contained in the calculated number of moles is calculated as;

Thus, the mass of nitric acid required to make the given solution is 0.0627 g.
Learn more about molarity of acids here: brainly.com/question/13864682
Answer:
The answer to your question is V = 0.32 L
Explanation:
Data
Volume of NH₃ = ?
P = 3.2 atm
T = 23°C
mass of CaH₂ = 2.65 g
Balanced chemical reaction
6Ca + 2NH₃ ⇒ 3CaH₂ + Ca₃N₂
Process
1.- Convert the mass of CaH₂ to moles
-Calculate the molar mass of CaH₂
CaH₂ = 40 + 2 = 42 g
42 g ------------------ 1 mol
2.65 g -------------- x
x = (2.65 x 1)/42
x = 0.063 moles
2.- Calculate the moles of NH₃
2 moles of NH₃ --------------- 3 moles of CaH₂
x --------------- 0.063 moles
x = (0.063 x 2) / 3
x = 0.042 moles of NH₃
3.- Convert the °C to °K
Temperature = 23°C + 273
= 296°K
4.- Calculate the volume of NH₃
-Use the ideal gas law
PV = nRT
-Solve for V
V = nRT / P
-Substitution
V = (0.042)(0.082)(296) / 3.2
-Simplification
V = 1.019 / 3.2
-Result
V = 0.32 L
Answer:
KCl is the answers for the question
Explanation:
please give me brainlest