Answer:
![P(x) = x^5 -9x^4 + 10x^3 + 25x^2](https://tex.z-dn.net/?f=P%28x%29%20%3D%20x%5E5%20-9x%5E4%20%2B%2010x%5E3%20%2B%2025x%5E2)
Step-by-step explanation:
The given degree of the polynomial P(x) = 5
The leading coefficient = 1
So, the general form of the polynomial with degree 5 is![x^5 + bx^4 + cx^3 + dx^2 + ex + f](https://tex.z-dn.net/?f=x%5E5%20%2B%20bx%5E4%20%2B%20cx%5E3%20%2B%20dx%5E2%20%2B%20ex%20%2B%20f)
Now root x =5 is of multiplicity 2, x = 0 of multiplicity 2, x = -1 of multiplicity 1
If x = a is the zero of the polynomial of multiplicity m, then ,
is the factor of the polynomial.
⇒
is a factor of P(x)
is another factor of P(x)
(x +1) is the last factor of P(x)
So, P(x) = Product of all factors = ![(x-5)^2 (x)^2(x+1)](https://tex.z-dn.net/?f=%28x-5%29%5E2%20%28x%29%5E2%28x%2B1%29)
Solving the above expression , we get
![P(x) = (x^2 + 25 -10x) (x^3 + x^2) = x^3(x^2 + 25 -10x) +x^2(x^2 + 25 -10x) \\= x^5 + 25 x^3 -10x^4 + x^4 +25x^2 -10x^3 \\=x^5 -9x^4 + 10x^3 + 25x^2](https://tex.z-dn.net/?f=P%28x%29%20%3D%20%28x%5E2%20%2B%2025%20-10x%29%20%28x%5E3%20%2B%20x%5E2%29%20%20%3D%20x%5E3%28x%5E2%20%2B%2025%20-10x%29%20%2Bx%5E2%28x%5E2%20%2B%2025%20-10x%29%20%5C%5C%3D%20x%5E5%20%2B%2025%20x%5E3%20-10x%5E4%20%2B%20x%5E4%20%2B25x%5E2%20-10x%5E3%20%5C%5C%3Dx%5E5%20-9x%5E4%20%2B%2010x%5E3%20%2B%2025x%5E2)
Hence, ![P(x) = x^5 -9x^4 + 10x^3 + 25x^2](https://tex.z-dn.net/?f=P%28x%29%20%3D%20x%5E5%20-9x%5E4%20%2B%2010x%5E3%20%2B%2025x%5E2)