Answer:
Maximum altitude above the ground = 1,540,224 m = 1540.2 km
Explanation:
Using the equations of motion
u = initial velocity of the projectile = 5.5 km/s = 5500 m/s
v = final velocity of the projectile at maximum height reached = 0 m/s
g = acceleration due to gravity = (GM/R²) (from the gravitational law)
g = (6.674 × 10⁻¹¹ × 5.97 × 10²⁴)/(6370000²)
g = -9.82 m/s² (minus because of the direction in which it is directed)
y = vertical distance covered by the projectile = ?
v² = u² + 2gy
0² = 5500² + 2(-9.82)(y)
19.64y = 5500²
y = 1,540,224 m = 1540.2 km
Hope this Helps!!!
To develop this problem it is necessary to apply the concepts related to Gravitational Potential Energy.
Gravitational potential energy can be defined as

As M=m, then

Where,
m = Mass
G =Gravitational Universal Constant
R = Distance /Radius
PART A) As half its initial value is u'=2u, then



Therefore replacing we have that,

Re-arrange to find v,



Therefore the velocity when the separation has decreased to one-half its initial value is 816m/s
PART B) With a final separation distance of 2r, we have that

Therefore




Therefore the velocity when they are about to collide is 
Answer:
Explanation:
the light ray leaving a medium in contrast to the entering or incident ray.
40 dB is 20 dB more power than 20 dB is. 20 dB more means 100 times as much.
Answer:
IV what is it's potential energy at the maximum height