Position displacement velocity acceleration are vectors and the rest are scalars
Answer:
The force is the same
Explanation:
The force per meter exerted between two wires carrying a current is given by the formula

where
is the vacuum permeability
is the current in the 1st wire
is the current in the 2nd wire
r is the separation between the wires
In this problem

Substituting, we find the force per unit length on the two wires:

However, the formula is the same for the two wires: this means that the force per meter exerted on the two wires is the same.
The same conclusion comes out from Newton's third law of motion, which states that when an object A exerts a force on an object B, then object B exerts an equal and opposite force on object A (action-reaction). If we apply the law to this situation, we see that the force exerted by wire 1 on wire 2 is the same as the force exerted by wire 2 on wire 1 (however the direction is opposite).
Answer:
An accelerometer is a tool that measures proper acceleration.[1] Proper acceleration is the acceleration (the rate of change of velocity) of a body in its own instantaneous rest frame;[2] this is different from coordinate acceleration, which is acceleration in a fixed coordinate system. For example, an accelerometer at rest on the surface of the Earth will measure an acceleration due to Earth's gravity, straight upwards[3] (by definition) of g ≈ 9.81 m/s2. By contrast, accelerometers in free fall (falling toward the center of the Earth at a rate of about 9.81 m/s2) will measure zero.
Accelerometers have many uses in industry and science. Highly sensitive accelerometers are used in inertial navigation systems for aircraft and missiles. Vibration in rotating machines is monitored by accelerometers. They are used in tablet computers and digital cameras so that images on screens are always displayed upright. In unmanned aerial vehicles, accelerometers help to stabilise flight.
When two or more accelerometers are coordinated with one another, they can measure differences in proper acceleration, particularly gravity, over their separation in space—that is, the gradient of the gravitational field. Gravity gradiometry is useful because absolute gravity is a weak effect and depends on the local density of the Earth, which is quite variable.
Single- and multi-axis accelerometers can detect both the magnitude and the direction of the proper acceleration, as a vector quantity, and can be used to sense orientation (because the direction of weight changes), coordinate acceleration, vibration, shock, and falling in a resistive medium (a case in which the proper acceleration changes, increasing from zero). Micromachined microelectromechanical systems (MEMS) accelerometers are increasingly present in portable electronic devices and video-game controllers, to detect changes in the positions of these devices.
Explanation:
hope this helps !!!!
This is what wiki says hope it helps
A displacement is a vector whose length is the shortest distance from the initial to the final position of a point P.[1] It quantifies both the distance and direction of an imaginary motion along a straight line from the initial position to the final position of the point.
A displacement may be also described as a 'relative position': the final position of a point (Sf) relative to its initial position (Si), and a displacement vector can be mathematically defined as the difference between the final and initial position vectors: