Part a can be solve using the equation of trajectory:
Y = x tana + (g*x^2)/ [2(V0^2)*(cos a)^2]
Where y is the height
X is the length
G is the acceleration due to gravity
Vo Is the initail velocity
a is the angle of trajectory
1.2 = 1.35 tan(0) +
(9.81*1.35^2)/ [2(V0^2)*(cos 0)^2]
Solve for V0 = 2.729 m/s
b. can be solve using the formula
v = sqrt(2gy)
= sqrt ( 2*1.2*9.81)
= 4.852 m/s going
down ( 0 degree from the horizontal)
<span> </span>
Answer:
D
A machine can help decrease the input force and increase the output force.
Answer:
Speed = Wavelength x Wave Frequency. In this equation, wavelength is measured in meters and frequency is measured in hertz (Hz), or number of waves per second. Therefore, wave speed is given in meters per second, which is the SI unit for speed.
(0.5)×(0squared)×(3)=(1.5j)
Answer:
Kinetic energy of diver at 90% of the distance to the water is 9000 J
Explanation:
Let d is the distance between the position of the diver and surface of the pool.
Initially, the diver is at rest and only have potential energy which is equal to 10000 J.
As the diver dives towards the pool, its potential energy is converting into kinetic energy due to law of conservation of energy, as total energy of the system remains same.
Energy before diving = Energy during diving
(Potential Energy + Kinetic Energy) = (Kinetic Energy + Potential Energy)
When the diver reaches 90% of the distance to the water, its kinetic energy
is 90% to its initial potential energy, as its initial kinetic is zero,i.e.,
K.E. = 
K.E. = 9000 J