F = G mM / r^2, where
<span>F = gravitational force between the earth and the moon, </span>
<span>G = Universal gravitational constant = 6.67 x 10^(-11) Nm^2/(kg)^2, </span>
<span>m = mass of the moon = 7.36 × 10^(22) kg </span>
<span>M = mass of the earth = 5.9742 × 10^(24) and </span>
<span>r = distance between the earth and the moon = 384,402 km </span>
<span>F </span>
<span>= 6.67 x 10^(-11) * (7.36 × 10^(22) * 5.9742 × 10^(24) / (384,402 )^2 </span>
<span>= 1.985 x 10^(26) N</span>
Answer:
The velocity of the fish hitting the ground is , v = 45.795 m/s
Explanation:
Given data,
The mass of the fish, m = 5 kg
The height of the bird from the surface, h = 107 m
Using the III equation of motion,
v² = u² + 2gs
<em> v = √(u² + 2gs)</em>
Substituting the values,
v = √(0² + 2 x 9.8 x 107)
= 45.795 m/s
Hence, the velocity of the fish hitting the ground is, v = 45.795 m/s
A.lucid because it makes more sense yo the answer how about you do it yourself
<h2>
Answer: Pulsars</h2>
A <u>pulsar</u> is a neutron star that emits very intense electromagnetic radiation at short and periodic intervals ( rotating really fast) due to its intense magnetic field that induces this emission.
Nevertheless, it is important to note that all pulsars are neutron stars, but not all neutron stars are pulsars.
Let's clarify:
A neutron star, is the name given to the remains of a supernova. In itself it is the result of the gravitational collapse of a massive supergiant star after exhausting the fuel in its core.
Neutron stars have a small size for their very high density and they rotate at a huge speed.
However, the way to know that a pulsar is a neutron star is because of its high rotating speed.
Answer:
we know that current = charge/time
Explanation:
therefore,
A = 8000/120
A => 66.666.... amperes