The answer is <span>64 apples, 96 oranges, and 12 pears.</span>
Let's represent the fruit as following:
a - the number of apples,
o - the number of oranges,
p - the number of pears.
![a:o=4:6](https://tex.z-dn.net/?f=a%3Ao%3D4%3A6)
⇒
![\frac{a}{o}= \frac{4}{6}](https://tex.z-dn.net/?f=%20%5Cfrac%7Ba%7D%7Bo%7D%3D%20%5Cfrac%7B4%7D%7B6%7D%20%20)
⇒
![a= \frac{4}{6}o](https://tex.z-dn.net/?f=a%3D%20%5Cfrac%7B4%7D%7B6%7Do%20)
![o:p=8:1](https://tex.z-dn.net/?f=o%3Ap%3D8%3A1)
⇒
![\frac{o}{p}= \frac{8}{1}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bo%7D%7Bp%7D%3D%20%5Cfrac%7B8%7D%7B1%7D%20)
<span>⇒
![o= 8p](https://tex.z-dn.net/?f=o%3D%208p%20)
</span>
Therefore:
![a= \frac{4}{6}*8p =16/3p](https://tex.z-dn.net/?f=a%3D%20%5Cfrac%7B4%7D%7B6%7D%2A8p%20%3D16%2F3p%20)
Now, if
![a+o+p=172](https://tex.z-dn.net/?f=a%2Bo%2Bp%3D172)
, then:
![\frac{16}{3}p +8p+p=172](https://tex.z-dn.net/?f=%20%5Cfrac%7B16%7D%7B3%7Dp%20%2B8p%2Bp%3D172)
![\frac{16}{3}p +9p172](https://tex.z-dn.net/?f=%20%5Cfrac%7B16%7D%7B3%7Dp%20%2B9p172)
Since
![9= \frac{9}{1} = \frac{27}{3}](https://tex.z-dn.net/?f=9%3D%20%5Cfrac%7B9%7D%7B1%7D%20%3D%20%5Cfrac%7B27%7D%7B3%7D%20)
, 9p can be expressed as 27/3p:
![\frac{16}{3}p+ \frac{27}{3}p=172](https://tex.z-dn.net/?f=%20%5Cfrac%7B16%7D%7B3%7Dp%2B%20%20%5Cfrac%7B27%7D%7B3%7Dp%3D172%20)
![\frac{43}{3}p =172](https://tex.z-dn.net/?f=%20%5Cfrac%7B43%7D%7B3%7Dp%20%3D172)
⇒
![p =172* \frac{3}{43}](https://tex.z-dn.net/?f=p%20%3D172%2A%20%5Cfrac%7B3%7D%7B43%7D%20)
⇒ p = 12
There are 12 pears.
Since o = 8p, o = 96:
o = 8 × 12 = 96
There are 96 oranges.
Since
![a= \frac{16}{3}p](https://tex.z-dn.net/?f=a%3D%20%5Cfrac%7B16%7D%7B3%7Dp)
, a = 64:
![a= \frac{16}{3} *12=16*4=64](https://tex.z-dn.net/?f=a%3D%20%5Cfrac%7B16%7D%7B3%7D%20%2A12%3D16%2A4%3D64)
There are 64 apples.
Therefore, there are 64 apples, 96 oranges, and 12 pears.