3.0e23 atoms Ne
"E" means 10^
Then we multiply it by a mole of Ne. By the definetion of a mole, it is always 6.022e23 atoms of an element.
So now, we do this:
3.0e23 atoms Ne x (1 mol Ne / 6.022e23 atoms Ne)
After that, we use molar mass. A mole of Neon is equal, in terms of grams, to its avg. atomic mass. This goes true for any element.
It ends up like this:
3.0e23 atoms Ne x (1 mol Ne / 6.022e23 atoms Ne) x (20.1797 g Ne / 1 mol Ne)
Now cancel out the "atoms Ne" and "1 mol Ne"
You end up with a grand total of...
*plugs everything into a calculator*
10.05298... g Ne.
We need to round to 2 sig. figs. (3.0) so now it's....
10 g Ne.
Note that this method can only be used for converting atoms of an element to mass in grams.
Source(s):
A periodic table for the atomic mass of neon.
A chemistry textboook
A chemistry class.
3Si + 2N2 --> Si3N4 (as given)
n(Si) = m/MM = 38.25/28.085 = 1.3619 mol
n(N2) = 14.33/2*14.007 = 0.5115 mol
Therefore, N2 is limiting and Si is in excess
The molar ratio of 2N2:Si3N4 is 2:1
So, 0.0575 mol of silicon nitride is formed (dividing 0.5115 by 2)
m of silicon nitride= n*mm = 0.0575*140.283 = 8.06627... g
= 8.066g (4 significant figures)
(hopefully it is right, but double check in case i did something wrong) :)
Galactic recycling is a natural phenomenon in which the stars expel some gas into the space so that it would mix with the interstellar medium. As a result, this would produce new younger stars. So, basically, the concept done here is the mass and energy conservation. In order to create new species, the energy must come from another source.
They discovered that *elements* show increase in atomic numbers across the period.
Answer:
B
Explanation:
The mantle is composed of the mesosphere and the asthenosphere in the upper most part and in the crust is the lithosphere