Cations from smallest to largest
Li⁺ ,Na⁺, K⁺ (from Periodic Table, the bigger number of period, the bigger size, of atom, so the bigger size of cation)
1) LiF smaller cation then KF
1,036 <span>853
</span><span>The lattice energy increases as cations get smaller, as shown by LiF and KF.
</span><span>I think this one should be correct answer, because the compared substances have also the same anion, and we can compare cations in them.
2) The same cation Li , so wrong statement.
3)</span>The same cation Na , so wrong statement.
4) NaCl smaller cation then KF
786 853
Answer:
A
Explanation:
I'm right I took the test
Answer:
1.) 13 g C₄H₁₀
2.) 41 g CO₂
Explanation:
To find the mass of propane (C₄H₁₀) and carbon dioxide (CO₂), you need to (1) convert mass O₂ to moles O₂ (via molar mass), then (2) convert moles O₂ to moles C₄H₁₀/CO₂ (via mole-to-mole ratio from equation coefficients), and then (3) convert moles C₄H₁₀/CO₂ to mass C₄H₁₀/CO₂ (via molar mass). It is important to arrange the ratios in a way that allows for the cancellation of units. The final answers should have 2 sig figs to match the sig figs of the given value.
Molar Mass (C₄H₁₀): 4(12.011 g/mol) + 10(1.008 g/mol)
Molar Mass (C₄H₁₀): 58.124 g/mol
Molar Mass (CO₂): 12.011 g/mol + 2(15.998 g/mol)
Molar Mass (CO₂): 44.007 g/mol
Molar Mass (O₂): 2(15.998 g/mol)
Molar Mass (O₂): 31.996 g/mol
2 C₄H₁₀ + 13 O₂ ----> 8 CO₂ + 10 H₂O
48 g O₂ 1 mole 2 moles C₄H₁₀ 58.124 g
--------------- x ----------------- x -------------------------- x ------------------ =
31.996 g 13 moles O₂ 1 mole
= 13 g C₄H₁₀
48 g O₂ 1 mole 8 moles CO₂ 44.007 g
--------------- x ----------------- x -------------------------- x ------------------ =
31.996 g 13 moles O₂ 1 mole
= 41 g CO₂
Answer:
(CH3)2CHCH2CHO
Explanation:
The reaction sequence begins with the reaction of isopropanol with phosphorus tribromide to yield isopropyl bromide. This is followed by reaction with Magnesium in ether solution giving a grignard reagent, isopropyl magnesium bromide. This is now attacked by oxirane and the epoxide ring opens, hydrolysis of the product, followed by oxidation using pyridinium chlorochromate (PCC) yields the final product- (CH3)2CHCH2CHO
The detailed reaction mechanism is attached to this answer.