1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
musickatia [10]
3 years ago
14

Of the choices below, the planet furthest from the sun is

Physics
2 answers:
elixir [45]3 years ago
6 0
D. Mars    hope that helps you
____ [38]3 years ago
6 0

Answer:

d. Mars.

Explanation:

In the solar system, there are 8 planets. The arrangement of planets in order from closest to farthest from sun is:

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus  

Neptune

The first 4 our rocky planets.The last four are Jovian planets/gaseous planets. From the given options, the planet which is furthest is Mars.

You might be interested in
A baseball pitcher throws a ball horizontally at a speed of 34.0 m/s. A catcher is 18.6 m away from the pitcher. Find the magnit
Sidana [21]

To develop this problem, it is necessary to apply the concepts related to the description of the movement through the kinematic trajectory equations, which include displacement, velocity and acceleration.

The trajectory equation from the motion kinematic equations is given by

y = \frac{1}{2} at^2+v_0t+y_0

Where,

a = acceleration

t = time

v_0 = Initial velocity

y_0 = initial position

In addition to this we know that speed, speed is the change of position in relation to time. So

v = \frac{x}{t}

x = Displacement

t = time

With the data we have we can find the time as well

v = \frac{x}{t}

t = \frac{x}{v}

t = \frac{18.6}{34}

t = 0.547s

With the equation of motion and considering that we have no initial position, that the initial velocity is also zero then and that the acceleration is gravity,

y = \frac{1}{2} at^2+v_0t+y_0

y = \frac{1}{2} gt^2+0+0

y = \frac{1}{2} gt^2

y = \frac{1}{2} 9.8*0.547^2

y = 1.46m

Therefore the vertical distance that the ball drops as it moves from the pitcher to the catcher is 1.46m.

6 0
3 years ago
Radiant heat makes it impossible to stand close to a hot lava flow. Calculate the rate of heat loss by radiation from 1.00 m^2 o
VARVARA [1.3K]

The rate of heat loss by radiation is equal to <u>-207.5kW</u>

Why?

To calculate the heat loss rate (or heat transfer rate) by radiation, from the given situation, we can use the following formula:

HeatLossRate=E*S*A*((T_{cold})^{4} -(T_{hot})^{4} )

Where,

E, is the emissivity of the body.

A, is the area of the body.

T, are the temperatures.

S, is the Stefan-Boltzmann constant, which is equal to:

5.67x10^{-8}\frac{W}{m^{2}*K^{-4} }

Now, before substitute the given information, we must remember that the given formula works with absolute temperatures (Kelvin), so,  we need to convert the given values of temperature from Celsius degrees to Kelvin.

We know that:

K=Celsius+273.15

So, converting we have:

T_{1}=1110\°C+273.15=1383.15K\\\\T_{2}=36.2\°C+273.15=309.35K

Therefore, substituting the given information and calculating, we have:

HeatLossRate=E*S*A*((T_{cold})^{4} -(T_{hot})^{4} )

HeatLossRate=1*5.67x10^{-8}\frac{W}{m^{2}*K^{-4} }*1m^{2} *((309.35K)^{4} -(1383.15})^{4} )\\\\HeatLossRate=5.67x10^{-8}\frac{W}{K^{-4} }*(95697.42K^{4} -3.66x10^{12}K^{4})\\ \\HeatLossRate=5.67x10^{-8}\frac{W}{K^{-4} }*(-3.66x10^{12} K^{4})=-207522W=-207.5kW

Hence, we have that the rate of heat loss is equal to -207.5kW.

8 0
3 years ago
Two identical 7.10-gg metal spheres (small enough to be treated as particles) are hung from separate 700-mmmm strings attached t
nlexa [21]

Answer:

Explanation:

Let m be mass of each sphere and θ be angle, string makes with vertex in equilibrium.

Let T be tension in the hanging string

T cosθ = mg ( for balancing in vertical direction )

for balancing in horizontal direction

Tsinθ = F ( F is force of repulsion between two charges sphere)

Dividing the two equations

Tanθ = F / mg

tan17 = F / (7.1 x 10⁻³ x 9.8)

F = 21.27 x 10⁻³ N

if q be charge on each sphere , force of repulsion between the two

F = k q x q / r² ( r is distance between two sphere , r = 2 x .7 x sin17  = .41 m )

21.27 x 10⁻³  = (9 X 10⁹ x q²) / .41²

q² = .3973 x 10⁻¹²

q = .63 x 10⁻⁶ C

no of electrons required  = q / charge on a single electron

= .63 x 10⁻⁶ / 1.6 x 10⁻¹⁹

= .39375 x 10¹³

3.9375 x 10¹² .

4 0
3 years ago
What will happen two temperatures if you increase particle motion
nalin [4]

If the temperature is increased the particles gain more kinetic energy or vibrate faster. This means that they move faster and take more space.

8 0
3 years ago
Someone please helpppp!
Vlad1618 [11]
I believe it’s A, i could be wrong tho 3
8 0
3 years ago
Other questions:
  • A sled is on an icy (frictionless) slope that is 30° above the horizontal. When a 40-N force, parallel to the incline and direct
    10·1 answer
  • Match the term with the definition.
    7·1 answer
  • Which of these materials is an example of an insulator?
    7·1 answer
  • (6) A 75 kg human total footprint area is 0.05 m2 when wearing winter boots. Suppose that you want to walk on snow that can at m
    11·1 answer
  • A man is riding his 4-wheeler at 60 km/hr. If he is riding it constantly at this rate for 1.5 hours, how far did he ride?
    10·1 answer
  • The African and South American continents are separating at a rate of about 3 cm per year, according to the ideas of plate tecto
    10·1 answer
  • (a) Suppose that a NASCAR race car is moving to the right with a constant velocity of +93 m/s. What is the average acceleration
    11·1 answer
  • What is the difference between solar minimum and solar maximum
    6·1 answer
  • 2) Um gás ideal sofre uma determinada transformação, conforme mostra o gráfico abaixo. Considere
    12·1 answer
  • The Surface Pressure at Leh, Ladakh is 800 mb. Now, assuming that Leh is at an altitude of 3500 m and every 100 m increase in he
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!