The balloon's volume at 35°C : V₂=31.01 L
<h3>Further explanation</h3>
Given
T₁ = 25°C+273 = 298 K
V₁ = 30 L
T₂ = 35 °C + 273 = 308 K
Required
The new volume (V₂)
Solution
Charles's Law
When the gas pressure is kept constant, the gas volume is proportional to the temperature

Input the value :
V₂=(V₁.T₂)/T₁
V₂=(30 x 308)/298
V₂=31.01 L
We are given the base dissociation constant, Kb, for Pyridine (C5H5N) which is 1.4x10^-9. The acid dissociation constant, Ka for the Pyridium ion or the conjugate acid of Pyridine is to be determined. We know from our chemistry classes that:
Kw = Kb * Ka
where Kw is always equal to 1x10^-14
so, to solve for Ka of Pyridium ion, substitute Kb to the equation together with Kw and solve for Ka:
1x10^-14 = 1.4x10^-9 * Ka
solve for Ka
Ka = 7.14x10^-6
Therefore, the acid dissociation constant of Pyridinium ion is 7.14x10^-6.
<span />
The answer is true. I know this because it almost happened to me.
Well, first of all, the formula for finding potential energy is;
PE=mgh
Where; m is the mass
g is the gravitational force or acceleration due to gravity
h is the height.
Anyway, according to the question, the mass is 1kg, the acceleration due to gravity has a constant value of 10ms² . And the height is 3m. Now you just have to use all these in the formula. So;
mgh= 1 x 10 x 3. That will be 30. And the unit of potential energy is Joule. So the answer is 30 joules. Hope i helped. Have a nice day.