Arrangement of atoms or group of atoms in a three dimensional ordered pattern in a crystal is said to be a crystalline lattice. They are arranged in a specific pattern with high symmetry. The heating of the crystal at high temperature will result in the increase of vibrational kinetic energy of the atoms in the crystal and this will result in the breaking of lattice apart and due to the breaking of lattice apart the ions will flow freely.
Thus, the heating of a solid at high temperature will lead to the lattice breaks apart and ions will flow freely.
Hi. 2fouls! :)
First convert the number from kilometer to miles:


Now to find the miles per minutes,divide the miles per hours by 60 (the amount of minutes in an hour.)


The car is travelling at a speed of 0.860766667 miles/minute.
Hope this helps.
-Benjamin
Answer:
1) 0 N
2) 8 N
Explanation:
The net force is the sum of all of the forces acting on the object.
For question 1, we can see that there is a force of 5 N acting to the right and 5 N acting to the left. If we define the right to be positive and the left to be negative, then the net force equals:
Fnet = 5N - 5N = 0 N
Therefore, the net force in question 1 is 0 N.
For question 2, the process is very similar. We want to find the sum of the forces acting on the object. In this case, there are forces of 3 N and 5 N acting to the right.
Fnet = 3 N + 5 N = 8 N
Therefore, the net force in question 2 is 8 N.
Hope this helps!
Answer:
The amount of energy liberated will be 49.38 J.
Explanation:
The amount of energy liberated (gibbs free energy) can be calculated using the following equation:
ΔG° = -nFε
n: amount of moles of electrons transfered
F: Faraday's constant
ε: cell potential
20.0 g of Zn is equal to 0.30 mol.
Two electrons are transfered during the reaction.
Therefore, n = 2x0.30 ∴ n = 0.60
ΔG° = - 0.60 x 96.485 x 0.853
ΔG° = 49.38 J
There are several ways to give an object potential energy. One can move the object against the force of gravity to increase. One can also stretch an object out or put pressure on it.