Answer:
Protons and electrons are charged particles. Neutrons have no charge.
Answer:
yes, radio waves and x-rays are type of light.
Gravity causes a falling object to fall 9.8 m/s faster every second it falls.
Kenny's book started out with no speed when it was dropped.
1.5 sec later, it was falling at (9.8 x 1.5) = 14.7 m/s .
During the fall, its average speed was 1/2(0 + 14.7) = 7.35 m/s .
Distance it covered = (average speed) x (time) =
(7.35 m/s) x (1.5 sec) = 11.025 m
Answer:
d = 120 [m]
Explanation:
In order to solve this problem, we must use the theorem of work and energy conservation. Where the energy in the final state (when the skater stops) is equal to the sum of the mechanical energy in the initial state plus the work done on the skater in the initial state.
The mechanical energy is equal to the sum of the potential energy plus the kinetic energy. As the track is horizontal there is no unevenness, in this way, there is no potential energy.
E₁ + W₁₋₂ = E₂
where:
E₁ = mechanical energy in the initial state [J] (units of Joules)
W₁₋₂ = work done between the states 1 and 2 [J]
E₂ = mechanical energy in the final state = 0
E₁ = Ek = kinetic energy [J]
E₁ = 0.5*m*v²
where:
m = mass = 60 [kg]
v = initial velocity = 12 [m/s]
Now, the work done is given by the product of the friction force by the distance. In this case, the work is negative because the friction force is acting in opposite direction to the movement of the skater.
W₁₋₂ = -f*d
where:
f = friction force = 36 [N]
d = distance [m]
Now we have:
0.5*m*v² - (f*d) = 0
0.5*60*(12)² - (36*d) = 0
4320 = 36*d
d = 120 [m]
Answer:
6.22 N/m
Explanation:
From Hooke's law we deduce that F=kx where F is the applied force and k is the spring constant while x is the extension or compression of the spring. Making k the subject of the above formula then

We also know that the force F is equal to mg where m is the mass of an object and g is acceleration due to gravity hence substituting F with mg we get that

Substituting m with 425 g which is equivalent to 0.425 kg and g with 9.81 then 0.67 for x we get that

Therefore, the spring constant is approximately 6.22 N/m