The answer would be 3,145N. Using W=mg solve for the mass of the man on earth. Once you have the mass you can multiply it by the gravity of Jupiter giving you his weight in Newton’s on Jupiter.
Protons, neutrons, and electrons<span> are the three main subatomic particles found in an atom.</span>
Answer:
The difference in the decibel corresponses to a constant difference in the loudness perceived.
The refore the sound intensity from the orchestra is like 100 times that of the violin.
Explanation:
Answer:
159.38 Watts
Explanation:
Initially;
- Mass on the spring is 8.5 kg
- Therefore, compression force is 85 N
- Compression distance is 15 cm or 0.15 m
But;
F = kx
where F is the force of compression, k is the spring constant and x is the compression distance.
Thus;
k = F/x
= 85 N ÷0.15
= 566.67 N/m
We are required to determine the power needed to stretch the same spring for 1.5 m in 4 secs.
Power = Work done ÷ time
Work done is given by 0.5kx²
Therefore;
Power = 0.5kx²÷ t
= (0.5×566.67 N/m × 1.5² ) ÷ 4 seconds
= 159.38 Watts
Thus, the power needed is 159.38 watts
The current in the ideal diode with forward biased voltage drop of 65V is 132.6 mA.
To find the answer, we have to know more about the ideal diode.
<h3>
What is an ideal diode?</h3>
- A type of electronic component known as an ideal diode has two terminals, only permits the flow of current in one direction, and has less zero resistance in one direction and infinite resistance in another.
- A semiconductor diode is the kind of diode that is used the most commonly.
- It is a PN junction-containing crystalline semiconductor component that is wired to two electrical terminals.
<h3>How to find the current in ideal diode?</h3>
- Here we have given with the values,

- We have the expression for current in mA of the ideal diode with forward biased voltage drop as,

Thus, we can conclude that, the current in mA of the ideal diode with forward biased voltage drop of 65 V is 132.6.
Learn more about the ideal diode here:
brainly.com/question/14988926
#SPJ4