Initially, the experiment has only potential energy (since total energy is the sum of kinetic and potential energy). And at the end, the experment has only kinetic energy.
Explanation:
First we will convert the given mass from lb to kg as follows.
157 lb = 
= 71.215 kg
Now, mass of caffeine required for a person of that mass at the LD50 is as follows.

= 12818.7 mg
Convert the % of (w/w) into % (w/v) as follows.
0.65% (w/w) = 
= 
= 
Therefore, calculate the volume which contains the amount of caffeine as follows.
12818.7 mg = 12.8187 g = 
= 1972 ml
Thus, we can conclude that 1972 ml of the drink would be required to reach an LD50 of 180 mg/kg body mass if the person weighed 157 lb.
Answer:

Explanation:
Since fluid is pumping in and out at the same rate (5L/min), the total fluid volume in the tank stays constant at 350L. Only the amount of salt and its concentration changed overtime.
Let A(t) be the amount of salt (g) at time t and C(t) (g/L) be the concentration at time t
A(0) = 10 g
Brine with concentration of 1g/L is pouring in at the rate of 5L/min so the salt income rate is 5 g/min
The well-mixed solution is pouring out at the rate of 5L/min at concentration C(t) so the salt outcome rate is 5C g/min
But the concentration is total amount of salt over 350L constant volume
C = A / 350
Therefore our rate of change for salt A' is
A' = 5 - 5A/350 = 5 - A/70
This is a first-order linear ordinary differential equation and it has the form of y' = a + by. The solution of this is

So 
with A(0) = 10
c + 350 = 10
c = 10 - 350 = -340
