Answer:
shorter
longer
Explanation:
The carbon-carbon bond length in ethylene is <u>shorter</u> than the carbon-carbon bond length in ethane, and the HCH bond angle in ethylene is <u>longer</u> the HCH bond angle in ethane.
The objective of this question is to let us understand the concept of Bond Length and Bond angle among the unsaturated aliphatic hydrocarbons (i.e alkanes, alkenes and alkynes).
The variation in bond angles of unsaturated aliphatic hydrocarbons can be explained by two concepts; The valence shell electron pair repulsion (VSEPR) model and hybridization.
The VSEPR model determines the total number of electron pairs surrounding the central atom of a species. The total number of electron pairs consist of the bond pairs and lone pairs. All the electron pairs( lie charge ) will then orient themselves in such a way to minimize the electrostatic repulsion between them.
As the number of the lone pairs increases from zero to 2 ; the bond angles diminish progressively.
However;
Hybridization is the mixing or blending of two or more pure atomic orbitals (s,p and d) to form two or more hybrid atomic orbitals that are identical in shape and energy . e.g sp, sp² , sp³ hybrid orbitals etc .
The shape of the geometry of this compound hence determines their bond angle.
The shape of the geometry of ethane is tetrahedral which is 109.5° in bond angle while that of ethylene is trigonal planar which is 120°.
This is why the HCH bond angle in ethylene is longer the HCH bond angle in ethane .
<span>The waveform shown on an oscilloscope is a signal graph of voltage as a function of time.
Such a signal isn't considered by the oscilloscope to be traveling, and
hence the oscilloscope itself doesn't see the signal as a wave.
In the wire though, it "sort of" is a longitudinal wave of
electrons...but then again, there is more to the story. There is also a
radio EM wave in the surrounding electric and magnetic fields, and the
engineers interested in long distance signal transmission study these
fields to estimate velocity factor. </span>
Environmental selective pressures. In other words, natural selection took place. It was the environment that caused these changes. Birds on the islands with the most suitable traits for survival thrived while the birds that didn't die.
Plant cells<span> are </span>eukaryotic cells<span>. Prokaryotic </span>cells<span> do not contain a membrane bound nucleus, mitochondria or other membrane bound </span>cell<span> structures (organelles), the DNA of prokaryotic </span>cells<span> are located in the cytoplasm of the </span>cell<span>. ... </span>Plant cells<span> are </span>eukaryotic<span> because they have a nuclear membrane.
so therefore, A rose thorn is a eukaryotic plant cell.</span>