Gravity, and Normal. Check the comments for why Applied isn't one.
The Doppler Effect provides the equation for the
calculation of apparent frequency:
f=fo[vo/(vo-vr)]
where:<span>
vo=source wave velocity
vr=relative speed between source and observer
f=apparent frequency
fo=source frequency </span>
<span>
The velocity of the doppler wave is
v=λf</span>
where λ is light wavelength. Hence,
v=λfo[vo/(vo-vr)]
Based on the equation, we can say that wave
velocity will always be defined by one and only one wavelength.
Therefore the answer is letter C.
<span> </span>
Answer:
Check the attached image
Explanation:
To solve the problem for time you will have to use the formula for time, t = d/s which means time equals distance divided by speed.
Kindly check the attached image below for the step by step explanation to the question.
When she starts out, he is (40x2.5)= 100 miles ahead of her.
She gains (65-40)= 25 miles on him every hour.
It takes her (100/25)= 4 hours to catch up to him.
The energy bar eaten by Sheila has chemical energy locked up inside it. This chemical energy is converted to mechanical energy in form of potential and kinetic energy and this in turn is converted to heat energy as the run progresses. Thus, the energy changes are: chemical energy to mechanical energy [kinetic and potential] and finally to heat energy.