The electric potential energy of the charge is equal to the potential at the location of the charge, V, times the charge, q:

The potential is given by the magnitude of the electric field, E, times the distance, d:

So we have

(1)
However, the electric field is equal to the electrical force F divided by the charge q:

Therefore (1) becomes

And if we use the data of the problem, we can calculate the electrical potential energy of the charge:
Answer:
a
The direction of the wave propagation is the negative z -axis
b
The amplitude of electric and magnetic field are
,
respectively
Explanation:
According to right hand rule, your finger (direction of electric field) would be pointing in the positive x-axis i.e towards your right let your palms be face toward the direction of the magnetic field i.e negative y-axis (toward the ground ) Then anywhere your thumb stretched out is facing is the direction of propagation of the wave here in this case is the negative z -axis
The Intensity of the wave is mathematically represented as

Given that 
Making
the subject we have

Substituting values as given on the question
![E_{rms} = \sqrt{\frac{7.43 *10^7[\frac{W}{m^2} ]}{0.5 * 3.08*10^8 *8.85*10^{-12}} }](https://tex.z-dn.net/?f=E_%7Brms%7D%20%3D%20%5Csqrt%7B%5Cfrac%7B7.43%20%2A10%5E7%5B%5Cfrac%7BW%7D%7Bm%5E2%7D%20%5D%7D%7B0.5%20%2A%203.08%2A10%5E8%20%2A8.85%2A10%5E%7B-12%7D%7D%20%7D)

The amplitude of the electric field is mathematically represented as



The amplitude of the magnetic field is mathematically represented as

Substituting value


If the object being represented is going both up and to the right.
(1) friction is the force resisting the relative motion of solid surfaces , fluid layers and material elements sliding against each other.
(2) gravity is a science fiction .
(3) Resistance ::: is a property of a conductor by which the passage of current is opposed causing electric energy to be transformed into heat .
(4) viscosity is the quantity that describes a fluid.
(5)