1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MissTica
3 years ago
9

An object with mass 3.5 kg is attached to a spring with spring stiffness constant k = 270 N/m and is executing simple harmonic m

otion. When the object is 0.020 m from its equilibrium position, it is moving with a speed of 0.55 m/s.(a) Calculate the amplitude of the motion._____ m(b) Calculate the maximum velocity attained by the object. [Hint: Use conservation of energy.]______ m/s
Physics
1 answer:
Elanso [62]3 years ago
4 0

Answer:

Part a)

A = 0.066 m

Part b)

maximum speed = 0.58 m/s

Explanation:

As we know that angular frequency of spring block system is given as

\omega = \sqrt{\frac{k}{m}}

here we know

m = 3.5 kg

k = 270 N/m

now we have

\omega = \sqrt{\frac{270}{3.5}}

\omega = 8.78 rad/s

Part a)

Speed of SHM at distance x = 0.020 m from its equilibrium position is given as

v = \omega \sqrt{A^2 - x^2}

0.55 = 8.78 \sqrt{A^2 - 0.020^2}

A = 0.066 m

Part b)

Maximum speed of SHM at its mean position is given as

v_{max} = A\omega

v_{max} = 0.066(8.78) = 0.58 m/s

You might be interested in
Which organism makes its own food? A mouse B snake C grass D owl
bearhunter [10]
Your answer will be C: grass

NOT A, because a mouse would eat seeds, grass, etc
NOT B, because a snake is a carnivore
NOT D, because a owl is also a carnivore
6 0
3 years ago
Read 2 more answers
What is the effect on the force of gravity between two objects if the mass of one object remains unchanged while the distance to
Vadim26 [7]

Answer:

The correct answer to the question is

B. It always decreases

Explanation:

To solve the question, we note that the foce of gravity is given by

F_G=\frac{Gm_1m_2}{r^2} where

G= Gravitational constant

m₁ = mass of first object

m₂ = mass of second object

r = the distance between both objects

If the mass of one object remains unchanged while the distance to the second object and the second object’s mass are both doubled, we have

F_{G2} =\frac{Gm_1(2m_2)}{(2r)^2} = \frac{2}{4} \frac{Gm_1m_2}{r^2}

Therefore the gravitational force is halved. That is it will always decrease

4 0
3 years ago
What change in entropy occurs when a 0.15 kg ice cube at -18 °C is transformed into steam at 120 °c 4.
Studentka2010 [4]

<u>Answer:</u> The change in entropy of the given process is 1324.8 J/K

<u>Explanation:</u>

The processes involved in the given problem are:

1.)H_2O(s)(-18^oC,255K)\rightarrow H_2O(s)(0^oC,273K)\\2.)H_2O(s)(0^oC,273K)\rightarrow H_2O(l)(0^oC,273K)\\3.)H_2O(l)(0^oC,273K)\rightarrow H_2O(l)(100^oC,373K)\\4.)H_2O(l)(100^oC,373K)\rightarrow H_2O(g)(100^oC,373K)\\5.)H_2O(g)(100^oC,373K)\rightarrow H_2O(g)(120^oC,393K)

Pressure is taken as constant.

To calculate the entropy change for same phase at different temperature, we use the equation:

\Delta S=m\times C_{p,m}\times \ln (\frac{T_2}{T_1})      .......(1)

where,

\Delta S = Entropy change

C_{p,m} = specific heat capacity of medium

m = mass of ice = 0.15 kg = 150 g    (Conversion factor: 1 kg = 1000 g)

T_2 = final temperature

T_1 = initial temperature

To calculate the entropy change for different phase at same temperature, we use the equation:

\Delta S=m\times \frac{\Delta H_{f,v}}{T}      .......(2)

where,

\Delta S = Entropy change

m = mass of ice

\Delta H_{f,v} = enthalpy of fusion of vaporization

T = temperature of the system

Calculating the entropy change for each process:

  • <u>For process 1:</u>

We are given:

m=150g\\C_{p,s}=2.06J/gK\\T_1=255K\\T_2=273K

Putting values in equation 1, we get:

\Delta S_1=150g\times 2.06J/g.K\times \ln(\frac{273K}{255K})\\\\\Delta S_1=21.1J/K

  • <u>For process 2:</u>

We are given:

m=150g\\\Delta H_{fusion}=334.16J/g\\T=273K

Putting values in equation 2, we get:

\Delta S_2=\frac{150g\times 334.16J/g}{273K}\\\\\Delta S_2=183.6J/K

  • <u>For process 3:</u>

We are given:

m=150g\\C_{p,l}=4.184J/gK\\T_1=273K\\T_2=373K

Putting values in equation 1, we get:

\Delta S_3=150g\times 4.184J/g.K\times \ln(\frac{373K}{273K})\\\\\Delta S_3=195.9J/K

  • <u>For process 4:</u>

We are given:

m=150g\\\Delta H_{vaporization}=2259J/g\\T=373K

Putting values in equation 2, we get:

\Delta S_2=\frac{150g\times 2259J/g}{373K}\\\\\Delta S_2=908.4J/K

  • <u>For process 5:</u>

We are given:

m=150g\\C_{p,g}=2.02J/gK\\T_1=373K\\T_2=393K

Putting values in equation 1, we get:

\Delta S_5=150g\times 2.02J/g.K\times \ln(\frac{393K}{373K})\\\\\Delta S_5=15.8J/K

Total entropy change for the process = \Delta S_1+\Delta S_2+\Delta S_3+\Delta S_4+\Delta S_5

Total entropy change for the process = [21.1+183.6+195.9+908.4+15.8]J/K=1324.8J/K

Hence, the change in entropy of the given process is 1324.8 J/K

4 0
3 years ago
At which of the following temperature and pressure levels would a gas be most likely to follow the ideal gas law? A. 0 K and 100
bulgar [2K]
The Ideal Gas Law makes a few assumptions from the Kinetic-Molecular Theory. These assumptions make our work much easier but aren't true under all conditions. The assumptions are,

1) Particles of a gas have virtually no volume and are like single points.
2) Particles exhibit no attractions or repulsions between them.
3) Particles are in continuous, random motion.
4) Collisions between particles are elastic, meaning basically that when they collide, they don't lose any energy.
5) The average kinetic energy is the same for all gasses at a given temperature, regardless of the identity of the gas.

It's generally true that gasses are mostly empty space and their particles occupy very little volume. Gasses are usually far enough apart that they exhibit very little attractive or repulsive forces. When energetic, the gas particles are also in fairly continuous motion, and without other forces, the motion is basically random. Collisions absorb very little energy, and the average KE is pretty close.

Most of these assumptions are dependent on having gas particles very spread apart. When is that true? Think about the other gas laws to remember what properties are related to volume.

A gas with a low pressure and a high temperature will be spread out and therefore exhibit ideal properties.

So, in analyzing the four choices given, we look for low P and high T.

A is at absolute zero, which is pretty much impossible, and definitely does not describe a gas. We rule this out immediately.

B and D are at the same temperature (273 K, or 0 °C), but C is at 100 K, or -173 K. This is very cold, so we rule that out.

We move on to comparing the pressures of B and D. Remember, a low pressure means the particles are more spread out. B has P = 1 Pa, but D has 100 kPa. We need the same units to confirm. Based on our metric prefixes, we know that kPa is kilopascals, and is thus 1000 pascals. So, the pressure of D is five orders of magnitude greater! Thus, the answer is B.
6 0
3 years ago
What is a magnetic field’s shape?
Agata [3.3K]

Answer:

Magnets come in a variety of shapes and one of the more common is the horseshoe (U) magnet. The horseshoe magnet has north and south poles just like a bar magnet but the magnet is curved so the poles lie in the same plane. The magnetic lines of force flow from pole to pole just like in the bar magnet.

7 0
3 years ago
Other questions:
  • Two students have the same velocity during a race. Colin has a mass of 80 kg while Kara has a mass of 80 kg. If Kara doubled her
    12·1 answer
  • Descriptive investigations involve collecting data about a system, but not making observations .
    12·2 answers
  • What three things do cells / organisms have to do to maintain homeostasis? ____ from food, get rid of ____, and _____(mitosis/me
    13·1 answer
  • The speed of sound at room temperature (20 degrees Celsius) is 343 m/s. If the speed of sound in air increases about 0.60 m/s fo
    14·1 answer
  • A 5kg book rests on a table. How much force is it exerting on the table?​
    10·2 answers
  • LW Hydraulic engineers in the United States often use, as a unit of volume of water, the acre-foot, defined as the volume of wat
    12·1 answer
  • Using the knowledge you gained from your lessons and from this practical exercise, this engine appears to be a
    5·1 answer
  • The average radial velocity of galaxies in the Hercules cluster is 10,800 km/s. (a) using H0 = 73 km/s/Mpc, find the distance to
    5·1 answer
  • For stars to form, the temperature of the hydrogen in a nebula must be more than 14 million Kelvin. How did gravitational attrac
    11·2 answers
  • HELP PLEASEE !!!! HELP FAST
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!