Answer:
Explanation:
The table that shows the pattern for this question is:
Time (year) Population
0 40
1 62
2 96
3 149
4 231
A growing exponentially pattern may be modeled by a function of the form P(x) = P₀(r)ˣ.
Where P₀ represents the initial population (year = 0), r represents the multiplicative growing rate, and P(x0 represents the population at the year x.
Thus you must find both P₀ and r.
<u>1) P₀ </u>
Using the first term of the sequence (0, 40) you get:
P(0) = 40 = P₀ (r)⁰ = P₀ (1) = P₀
Then, P₀ = 40
<u> 2) r</u>
Take two consecutive terms of the sequence:
- P(1) / P(0) = 40r / 40 = 62/40
You can verify that, for any other two consecutive terms you get the same result: 96/62 ≈ 149/96 ≈ 231/149 ≈ 1.55
<u>3) Model</u>
Thus, your model is P(x) = 40(1.55)ˣ
<u> 4) Population of moose after 12 years</u>
- P(12) = 40 (1.55)¹² ≈ 7,692.019 ≈ 7,692, which is round to the nearest whole number.
Answer:
Step-by-step explanation:
D
The answer is 600, I got this by multiplying the two numbers
Answer:
Density is defined as:
Density = mass/volume.
We know that:
For liquid A:
Density = 70kg/m^3
Mass = 1400kg
Then the volume is:
Volume = mass/density = (1400kg)/(70kg/m^3) = 20 m^3
For liquid B:
Density = 280 kg/m^3
Volume = 30m^3
We can find the mass of liquid B as:
mass = density*volume = (280kg/m^3)*(30m^3) = 8400 kg
We know that liquid C is a mixture of liquid A and B.
Then the mass of liquid C will be equal to the sum of the masses of liquid A and B, then:
Mass of liquid C = 1400kg + 8400kg = 9800kg
The same happens for the volume, then:
Volume of liquid C = 30m^3 + 20m^3 = 50m^3
Then the density of liquid C is:
Density of liquid C = (9800kg)/(50m^3) = 196 kg/m^3
Answer:
7
Step-by-step explanation: