1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
meriva
3 years ago
10

4. Find an equation for each line.

Mathematics
1 answer:
DedPeter [7]3 years ago
3 0

Answer:

1 lap in 8/10 (4/5) of a minute

Answer is B, 8/10 minute!

⭐ Please consider brainliest! ⭐

✉️ If any further questions, inbox me! ✉️

Step-by-step explanation:

You might be interested in
In a random sample of 150 customers of a high-speed Internetprovider, 63 said that their service had been interrupted one ormore
erastovalidia [21]

Answer:

a) The 95% confidence interval would be given by (0.341;0.499)

b) The 99% confidence interval would be given by (0.316;0.524)

c) n=335

d)n=649

Step-by-step explanation:

1) Notation and definitions

X_{IS}=63 number of high speed internet users that had been interrupted one or more times in the past month.

n=150 random sample taken

\hat p_{IS}=\frac{63}{150}=0.42 estimated proportion of high speed internet users that had been interrupted one or more times in the past month.

p_{IS} true population proportion of high speed internet users that had been interrupted one or more times in the past month.

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".

The margin of error is the range of values below and above the sample statistic in a confidence interval.

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The population proportion have the following distribution

p \sim N(p,\sqrt{\frac{\hat p(1-\hat p)}{n}})

1) Part a

In order to find the critical value we need to take in count that we are finding the interval for a proportion, so on this case we need to use the z distribution. Since our interval is at 95% of confidence, our significance level would be given by \alpha=1-0.95=0.05 and \alpha/2 =0.025. And the critical value would be given by:

t_{\alpha/2}=-1.96, t_{1-\alpha/2}=1.96

The confidence interval for the mean is given by the following formula:

\hat p \pm z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}

If we replace the values obtained we got:

0.42 - 1.96\sqrt{\frac{0.42(1-0.42)}{150}}=0.341

0.42 + 1.96\sqrt{\frac{0.42(1-0.42)}{150}}=0.499

The 95% confidence interval would be given by (0.341;0.499)

2) Part b

In order to find the critical value we need to take in count that we are finding the interval for a proportion, so on this case we need to use the z distribution. Since our interval is at 99% of confidence, our significance level would be given by \alpha=1-0.99=0.01 and \alpha/2 =0.005. And the critical value would be given by:

t_{\alpha/2}=-2.58, t_{1-\alpha/2}=2.58

The confidence interval for the mean is given by the following formula:

\hat p \pm z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}

If we replace the values obtained we got:

0.42 - 2.58\sqrt{\frac{0.42(1-0.42)}{150}}=0.316

0.42 + 2.58\sqrt{\frac{0.42(1-0.42)}{150}}=0.524

The 99% confidence interval would be given by (0.316;0.524)

3) Part c

The margin of error for the proportion interval is given by this formula:

ME=z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}    (a)

And on this case we have that ME =\pm 0.05 and we are interested in order to find the value of n, if we solve n from equation (a) we got:

n=\frac{\hat p (1-\hat p)}{(\frac{ME}{z})^2}   (b)

And replacing into equation (b) the values from part a we got:

n=\frac{0.42(1-0.42)}{(\frac{0.05}{1.96})^2}=374.32

And rounded up we have that n=335

4) Part d

The margin of error for the proportion interval is given by this formula:

ME=z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}    (a)

And on this case we have that ME =\pm 0.05 and we are interested in order to find the value of n, if we solve n from equation (a) we got:

n=\frac{\hat p (1-\hat p)}{(\frac{ME}{z})^2}   (b)

And replacing into equation (b) the values from part a we got:

n=\frac{0.42(1-0.42)}{(\frac{0.05}{2.58})^2}=648.599

And rounded up we have that n=649

5 0
3 years ago
What is the answer? <br> Plzz answer fast! <br> I’ll put you in brainliest.
Olenka [21]

Answer:

No they are not equivalent

8 0
3 years ago
Fill in the missing expression
padilas [110]

Answer:

The complete table is:

[ 5a ]           +    [ a + 3 ]      +    [ 4a ]     =    [ 10a + 3 ]

  +                         +                    +                    +

[ 2b ]          +     [ 4 + a ]      +     [ -a  ]     =    [  2b + 4 ]

  +                       +                     +                    +

[ 2a ]          +    [ a + 1 ]       +   [  -3a  ]    =   [     1      ]

  =                      =                     =                     =

[ 7a + 2b ]  +   [ 3a + 8 ]    +     [   0   ]    =   [10a + 2b + 8 ]

Explanation:

You can determine the content of each box by subtraction, running the rows and the columns.

The expressions are:

[ 5a ]  +    [          ]   +    [ 4a ]     =    [ 10a + 3 ]

  +                +                +                    +

[ 2b ]  +   [ 4 + a ]   +     [      ]     =    [              ]

  +              +                   +                    +

[      ]   +   [         ]   +      [  -3a  ]  =   [     1      ]

  =               =                   =                   =

[      ]  +   [ 3a + 8 ]  +  [         ]    =   [10a + 2b + 8 ]

<u>1. First row:</u>

[ 5a ]  +    [          ]   +    [ 4a ]     =    [ 10a + 3 ]

[      ] = [10a+ 3]  - [ 4a ] - [ 5a ] = 10a - 4a - 5a + 3 = a + 3

<u>2. Second colum:</u>

[ a + 3 ] + [ 4 + a ] + [       ] =  [ 3a + 8 ]

[        ] = [ 3a + 8 ] - [ a + 3 ] - [ 4 + a ] = 3a - a  + a  + 8 - 4 - 3 = a + 1

So far, you have completed this:

[ 5a ]  +    [ a + 3 ]   +    [ 4a ]     =    [ 10a + 3 ]

  +                +                +                    +

[ 2b ]  +   [ 4 + a ]   +     [      ]     =    [              ]

  +              +                   +                    +

[      ]   +   [ a + 1 ]   +     [  -3a  ]  =   [     1      ]

  =               =                   =                   =

[      ]  +   [ 3a + 8 ]  +  [         ]    =   [10a + 2b + 8 ]

<u></u>

<u>3. Complete the row 3:</u>

<u></u>

     [      ]   +   [ a + 1 ]   +      [  -3a  ]  =   [     1      ]

    [      ]   =    [     1      ]   -   [ a + 1 ]   -    [  -3a  ]  = - a + 3a + 1 - 1 = 2a

So far, you have completed this:

[ 5a ]  +    [ a + 3 ]   +    [ 4a ]     =    [ 10a + 3 ]

  +                +                +                    +

[ 2b ]  +   [ 4 + a ]   +     [      ]     =    [              ]

  +              +                   +                    +

[   2a   ]   +   [ a + 1 ]   +     [  -3a  ]  =   [     1      ]

  =               =                   =                   =

[      ]  +   [ 3a + 8 ]  +  [         ]    =   [10a + 2b + 8 ]

<u></u>

<u>4. Complete the fourth column:</u>

[ 10a + 3 ] + [    ] + [   1   ] = [10a + 2b + 8 ]

[    ] = 10a + 2b + 8 - 10a - 3 - 1 = 2b + 4

So far, this is the results:

[ 5a ]  +    [ a + 3 ]   +    [ 4a ]     =    [ 10a + 3 ]

  +                +                +                    +

[ 2b ]  +   [ 4 + a ]   +     [      ]     =    [  2b + 4 ]

  +              +                   +                    +

[   2a   ]   +   [ a + 1 ]   +     [  -3a  ]  =   [     1      ]

  =               =                   =                   =

[      ]  +   [ 3a + 8 ]  +  [         ]    =   [10a + 2b + 8 ]

<u>5. Complete the second row:</u>

[ 2b ]  +   [ 4 + a ]   +     [      ]     =    [  2b + 4 ]

 [      ]   =   [  2b + 4 ] - [ 2b ]  -   [ 4 + a ]  = 2b - 2b + 4 - 4 - a = - a

So far:

[ 5a ]  +    [ a + 3 ]      +    [ 4a ]     =    [ 10a + 3 ]

  +                +                    +                    +

[ 2b ]  +   [ 4 + a ]      +     [ -a  ]     =    [  2b + 4 ]

  +               +                     +                    +

[   2a   ]   +   [ a + 1 ]   +   [  -3a  ]  =   [     1      ]

  =               =                    =                   =

[      ]  +   [ 3a + 8 ]  +     [         ]    =   [10a + 2b + 8 ]

<u>6. Complete the first colum:</u>

[ 5a ] + [ 2b ] + [2a ] = [   ]

[   ] = [ 7a + 2b ]

So far:

[ 5a ]           +    [ a + 3 ]      +    [ 4a ]     =    [ 10a + 3 ]

  +                         +                    +                    +

[ 2b ]           +   [ 4 + a ]      +     [ -a  ]     =    [  2b + 4 ]

  +                       +                     +                    +

[ 2a ]          +   [ a + 1 ]       +   [  -3a  ]    =   [     1      ]

  =                      =                     =                    =

[ 7a + 2b ]  +   [ 3a + 8 ]   +     [         ]    =   [10a + 2b + 8 ]

<u>7. Complete the last row:</u>

[ 7a + 2b ]  +   [ 3a + 8 ]   +     [         ]    =   [10a + 2b + 8 ]

[         ]    =   [10a + 2b + 8 ] - [ 7a + 2b ] - [ 3a + 8 ] = 0

The complete table is:

[ 5a ]           +    [ a + 3 ]      +    [ 4a ]     =    [ 10a + 3 ]

  +                         +                    +                    +

[ 2b ]           +   [ 4 + a ]      +     [ -a  ]     =    [  2b + 4 ]

  +                       +                     +                    +

[ 2a ]          +   [ a + 1 ]       +     [ -3a  ]    =   [     1      ]

  =                      =                     =                     =

[ 7a + 2b ]  +   [ 3a + 8 ]    +     [   0  ]     =   [10a + 2b + 8 ]

5 0
3 years ago
Review the steps of the proof.
lana [24]

Answer:

steps 2 and 3 must be switched

Step-by-step explanation:

e2020

7 0
3 years ago
Read 2 more answers
10. The probability of buying pizza for dinner is 34% and the probability of buying
kipiarov [429]

Answer:

The probability of eating pizza given that a new car is bought is 0.952

Step-by-step explanation:

This kind of problem can be solved using Baye’s theorem of conditional probability.

Let A be the event of eating pizza( same as buying pizza)

while B is the event of buying a new car

P(A) = 34% = 0.34

P(B) = 15% = 15/100 = 0.15

P(B|A) = 42% = 0.42

P(B|A) = P(BnA)/P(A)

0.42 = P(BnA)/0.34

P(B n A) = 0.34 * 0.42 = 0.1428

Now, we want to calculate P(A|B)

Mathematically;

P(A|B = P(A n B)/P(B)

Kindly know that P(A n B) = P(B n A) = 0.1428

So P(A|B) = 0.1428/0.15

P(A|B) = 0.952

4 0
3 years ago
Other questions:
  • farmer fran has 47 barnyard animals,consisting of only chickens and sheep . if these animals have 138 legs , how many of each ty
    5·2 answers
  • What is 80 divided by 60
    11·1 answer
  • Sausages come in packets of 6. Bread rolls come in packets of 8. Brian wants to buy enough packs of sausages and rolls so that t
    7·1 answer
  • (-2 1/2) to the second power
    6·2 answers
  • Determine the equation of the line that passes through the given points. (If you have a graphing calculator, you can use the tab
    6·1 answer
  • Xavier starts the summer with $315 in his savings account. Since he will be working a lot this summer, he made plans to deposit
    11·1 answer
  • 17. Maeve takes pictures of people as they
    8·1 answer
  • Evaluate the expression for n = 8.<br> 6(n + 1) =?
    9·1 answer
  • There are 59 counters in a bag. 20 of the counters are green. The rest of the counters are yellow. One of the counters is taken
    8·1 answer
  • 60 points! No links or cheaters! I need a serious answer! Someone please help me I need to bump up my grade!
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!