Answer:
power emitted is 1.75 W
Explanation:
given data
length l = 5 cm = 5 ×
m
diameter d = 0.074 cm = 74 ×
m
total filament emissivity = 0.300
temperature = 3068 K
to find out
power emitted
solution
we find first area that is π×d×L
area = π×d×L
area = π×74 ×
×5 ×
area = 1162.3892 ×
m²
so here power emitted is express as
power emitted = E × σ × area × (temperature)^4
put here all value
power emitted = 0.300× 5.67 × 1162.3892 ×
× (3068)^4
power emitted = 1.75 W
As the length increases, resistance increases, as a result current decreases.
Answer:
m v1 = (m + M) v2
v2 = m v1 / (m + M)
v2 = 7 * 74 / (74 + 65)
3.73 m/s
74 kg is too heavy for the cannonball (over 150 lbs)
Ill save you all the math steps, but here is the answer! <span>102.25m I took that physics exam 3 days ago! So if you need the steps just ask Ill insert them in!</span>
Answer: The mass of the sculpture is 11.8kg
Explanation:
Using the equation of fundamental frequency of a taut string.
f = (1/2L)*√(T/μ) .... (Eqn1)
Where
f= frequency in Hertz =80Hz
T = Tension in the string = Mg
M represent the mass of the substance (sculpture) =?
g= 9.8m/s^2
L= Length of the string=90cm=0.9m
μ= mass density = mass of string /Length of string
mass of string =5g=0.005kg
L=0.9m
μ=0.005/0.9 = 0.0056kg/m
Using (Eqn1)
80= 1/(2*0.9) √(T/0.0056)
144= √(T/0.0056)
Square both sides
20736= T/0.0056
T= 116.12N
Recall that T =Mg
116.12= M * 9.8
M=116.12/9.8
M= 11.8kg
Therefore the mass of the sculpture is 11.8kg