Answer:
By convention a negative torque leads to clockwise rotation and a positive torque leads to counterclockwise rotation.
here weight of the child =21kgx9.8m/s2 = 205.8N
the torque exerted by the child Tc = - (1.8)(205.8) = -370.44N-m ,negative sign is inserted because this torque is clockwise and is therefore negative by convention.
torque exerted by adult Ta = 3(151) = 453N , counterclockwise torque.
net torque Tnet = -370.44+453 =82.56N , which is positive means counterclockwise rotation.
b) Ta = 2.5x151 = 377.5N-m
Tnet = -370.44+377.5 = 7.06N-m , positive ,counterclockwise rotation.
c)Ta = 2x151 = 302N-m
Tnet = -370.44+302 = -68.44N-m, negative,clockwise rotation.
A) the forces are acting in the same direction.. B) Together, forces are acting in opposite directions
Answer:
A) 80 N
B) 20 N
Explanation:
A) If the forces acting are in the same direction, then the net force will be a sum of both so many faces..
Thus;
ΣF = 50 + 30
ΣF = 80 N
B) If the forces are acting in the in opposite directions with the larger force pointing in the positive y-axis then, the net force is;
ΣF = 50 - 30
ΣF = 20 N
Answer:
, the minus meaning west.
Explanation:
We know that linear momentum must be conserved, so it will be the same before (
) and after (
) the explosion. We will take the east direction as positive.
Before the explosion we have
.
After the explosion we have pieces 1 and 2, so
.
These equations must be vectorial but since we look at the instants before and after the explosions and the bomb fragments in only 2 pieces the problem can be simplified in one dimension with direction east-west.
Since we know momentum must be conserved we have:

Which means (since we want
and
):

So for our values we have:
