The car's average <em>speed</em> is 97 km/hr.
Then for calculation purposes, we can assume that it covers 97 km in the
first hour, 97 km in the second hour, 97 km in the third hour, and 97 km in
the fourth hour.
All together, the car covers (97 x 4) = <em>388 km</em> of distance.
We don't know the car's velocity, because we have no information about the
<em>direction</em> it moved at any time during the four hours. So we have no way to
calculate how far it was from the starting point at the end of the fourth hour.
For all we can tell, if the direction (and therefore the velocity) varied just right,
the car could have ended up exactly where it started.
Answer:
1st law--Newton's first law states that every object will remain at rest or in uniform motion in a straight line unless compelled to change its state by the action of an external force. This is normally taken as the definition of inertia. The key point here is that if there is no net forceacting on an object (if all the external forces cancel each other out) then the object will maintain a constant velocity. If that velocity is zero, then the object remains at rest. If an external force is applied, the velocity will change because of the force.
2nd— The second law explains how the velocity of an object changes when it is subjected to an external force. The law defines a force to be equal to change in momentum(mass times velocity) per change in time. Newton also developed the calculus of mathematics, and the "changes" expressed in the second law are most accurately defined in differential forms. (Calculus can also be used to determine the velocity and location variations experienced by an object subjected to an external force.) For an object with a constant mass m, the second law states that the force F is the product of an object's mass and its acceleration a:
F = m * a
For an external applied force, the change in velocity depends on the mass of the object. A force will cause a change in velocity; and likewise, a change in velocity will generate a force. The equation works both ways.
3rd law-- The third law states that for every action (force) in nature there is an equal and opposite reaction. In other words, if object A exerts a force on object B, then object B also exerts an equal force on object A. Notice that the forces are exerted on different objects. The third law can be used to explain the generation of lift by a wing and the production of thrust by a jet engine.
Answer:
It you get a sushi for work, for a party, then it leads to people being happy, as an independant variable
It is changing the molecular structure of a protein
Explanation:
They measured the wavelength of light emitted by stars using spectrometers and found it was being redshifted.
This implied the stars were moving away aka the space between the scientists and the star was expanding