Answer:
1.6 ft/min
Explanation:
Since trough is 10 ft long and water is filled at the rate of 12ft3/min. We can calculate the rate of water filled with respect to area:
= 12 / 10 = 1.2ft2/min
As the water level rises, so does the water surface, or the bottom side of the isosceles triangles. In fact we can calculate the bottom side when the trough is half foot deep:
= 3 / 2 = 1.5 ft
The rate of change in water level would be the same as calculating the height of the isosceles triangles knowing its base
= 1.2 * 2 / 1.5 = 1.6 ft/min
Explanation:
First convert the speed into m/s and time into seconds
Answer:
g_x = 3.0 m / s^2
Explanation:
Given:
- Change in length of spring [email protected] = 22.6 cm
- Time taken for 11 oscillations t = 19.0 s
Find:
- The value of gravitational free fall g_x at plant X:
Solution:
- We will assume a simple harmonic motion of the mass for which Time is:
T = 2*pi*sqrt(k / m ) ...... 1
- Sum of forces in vertical direction @equilibrium is zero:
F_net = k*x - m*g_x = 0
(k / m) = (g_x / x) .... 2
- substitute Eq 2 into Eq 1:
2*pi / T = sqrt ( g_x / x )
g_x = (2*pi / T )^2 * x
- Evaluate g_x:
g_x = (2*pi / (19 / 11) )^2 * 0.226
g_x = 3.0 m / s^2