Answer: 3.75 m
Explanation:
5 squirts in 1 second
So, 1 squirt in 1/5 second which is 0.2 second.
The difference in timing of two consecutive squirt is 0.2 second, so
time (t) = 0.2 s.
speed (s) = 15 m/s
Distance of separation (d) = ?
Now, formula for distance is
d = s × t
d = 15 × 0.2
d = 3.75 m
It goes through your left atrium and right atrium
The amount of work done by two boys who apply 200 N of force in an unsuccessful attempt to move a stalled car is 0.
Answer: Option B
<u>Explanation:
</u>
Work done is the measure of work done by someone to push an object from its present position. We can also define work done as the amount of forces needed to move an object from its present position to another position. So the amount of work done is directly proportionate to the product of forces acting on the object and the displacement of the object.

So in this present case, as the two boys have done an unsuccessful attempts to push a stalled car so that means the displacement of the car is zero as there is no change in the position of the car. But they have applied a force of 200 N each. So the amount of work done will be

Thus, the amount of work done by two boys will be zero due to their unsuccessful attempt to move a stalled car.
This is a Fraunhofer single slit experiment, where the light passing through the slit produces an interference pattern on the screen, and where the dark bands (minima of diffraction) are located at a distance of

from the center of the pattern. In the formula, m is the order of the minimum,

the wavelenght,

the distance of the screen from the slit and

the width of the slit.
In our problem, the distance of the first-order band (m=1) is

. The distance of the screen is D=86 cm while the wavelength is

. Using these data and re-arranging the formula, we can find a, the width of the slit:
Answer:
it’s transparent to all visible light
step-by-step explanation:
translucent objects allow some light to travel through them