Answer:
V = 26.95 cm³
Explanation:
Density is given by the formula :
ρ = m÷V
Density = mass ÷ Volume
Given both density and mass we rearrange, substitute and solve for Volume :
Rearranging the equation to make Volume the subject :
ρ = m÷V
ρV = m
V = m÷ ρ
Now substitute :
V = 45 ÷ 1.67
V = 26.9461077844
Take 2 decimal places as the density is 2 decimal places :
V = 26.95
Units will be cm³ as it is volume
Hope this helped and have a good day
The range of the piece of paper is C) 1.4 m
Explanation:
The motion of the piece of paper is the motion of a projectile, which consists of two separate motions:
- A uniform motion along the horizontal direction, with constant velocity
- A uniformly accelerated motion along the vertical direction, with constant acceleration (the acceleration of gravity,
)
From the equation of motion, it is possible to find an expression for the range (the total horizontal distance covered) of a projectile, which is given by:

where
u is the initial velocity
is the angle of projection
g is the acceleration of gravity
For the piece of paper in this problem,
u = 4.3 m/s

Substituting,

Learn more about projectile motion:
brainly.com/question/8751410
#LearnwithBrainly
Answer:
Explanation:
Since the wires attract each other , the direction of current will be same in both the wires .
Let I be current in wire which is along x - axis
force of attraction per unit length between the two current carrying wire is given by
x 
where I₁ and I₂ are currents in the wires and d is distance between the two
Putting the given values
285 x 10⁻⁶ = 10⁻⁷ x 
I₂ = 16.76 A
Current in the wire along x axis is 16.76 A
To find point where magnetic field is zero due the these wires
The point will lie between the two wires as current is in the same direction.
Let at y = y , the neutral point lies
k 2 x
= k 2 x 
25.5y = 16.76 x .3 - 16.76y
42.26 y = 5.028
y = .119
= .12 m
Answer:
(a) W= 44N
(b)W= 31.65 N
Explanation:
Data
T=44 N : Maximum force that the rope can withstand without breaking
Newton's second law:
∑F = m*a Formula (1)
∑F : algebraic sum of the forces in Newton (N)
m : mass in kilograms (kg)
a : acceleration in meters over second square (m/s²)
(a) We apply the formula (1) at constant speed , then, a=0
W: heaviest fish that can be pulled up vertically
∑F = 0
T-W =0
W = T
W= 44N
(b) We apply the formula (1) , a= 1.26 m/s²
W: heaviest fish that can be pulled up vertically
W= m*g
m= W/g
g= 9.8 m/s² : acceleration due to gravity
∑F = 0
T-W = m*a
T= W+(W/g)*a
44=W*(1+1/9.8)* (1.26 )
44= W* 1.39
W= 44/1.39
W= 31.65 N