1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kazeer [188]
3 years ago
8

The efficiency of a device such as a lamp can be calculated using this equation:

Physics
2 answers:
loris [4]3 years ago
6 0

efficiency = (useful energy transferred ÷ energy supplied) × 100

It's easy to use this formula, but we have to know both the useful energy and the energy supplied.  The drawing doesn't tell us the useful energy, so we have to find a clever way to figure it out.  I see two ways to do it:

<u>Way #1:</u>

We all know about the law of conservation of energy.  So we know that the total energy coming out must be  250J, because that's how much energy is going in.  The wasted energy is 75J, so the rest of the 250J must be the useful energy . . . (250J - 75J) = 175J useful energy.

(useful energy) / (energy supplied) =  (175J) / (250J) = <em>70% efficiency</em>

================================

<u>Way #2: </u>

How much of the energy is wasted ? . . . 75J wasted

What percentage of the Input is that 75J ? . . . 75/250 = 30% wasted

30% of the input energy is wasted.  That leaves the other <em>70%</em> to be useful energy.

jek_recluse [69]3 years ago
3 0

Answer:

70%

Explanation:

I did the USA Test Prep.

You might be interested in
A rock weighing 98 newtons is pushed off the edge of a bridge 50 meters above the ground. What was the potential energy of the r
lidiya [134]
Ep = 4900 because Ep = wh
4 0
4 years ago
Read 2 more answers
A soccer ball is kicked horizontally. What is the average speed if its distance is 21.0 m after 4.00 s?
Over [174]
The answer would be 5.25 m/s
5 0
3 years ago
A piece of bismuth with a mass of 4.06 g 4.06 g gains 423 J 423 J of heat. If the specific heat of bismuth is 0.123 J / ( g ° C
Sholpan [36]

Answer: 846°C

Explanation:

The quantity of Heat Energy (Q) required to heat bismuth depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)

Thus, Q = MCΦ

Given that:

Q = 423 joules

Mass of bismuth = 4.06g

C = 0.123 J/(g°C)

Φ = ?

Then, Q = MCΦ

423 J = 4.06g x 0.123 J/(g°C) x Φ

423 J = 0.5J/°C x Φ

Φ = (423J/ 0.5g°C)

Φ = 846°C

Thus, the change in temperature of the sample is 846°C

4 0
4 years ago
The intensity of light from a star (its brightness) is the power it outputs divided by the surface area over which it’s spread:
kow [346]

Answer:

\frac{d_{1}}{d_{2}}=0.36

Explanation:

1. We can find the temperature of each star using the Wien's Law. This law is given by:

\lambda_{max}=\frac{b}{T}=\frac{2.9x10^{-3}[mK]}{T[K]} (1)

So, the temperature of the first and the second star will be:

T_{1}=3866.7 K

T_{2}=6444.4 K

Now the relation between the absolute luminosity and apparent brightness  is given:

L=l\cdot 4\pi r^{2} (2)

Where:

  • L is the absolute luminosity
  • l is the apparent brightness
  • r is the distance from us in light years

Now, we know that two stars have the same apparent brightness, in other words l₁ = l₂

If we use the equation (2) we have:

\frac{L_{1}}{4\pi r_{1}^2}=\frac{L_{2}}{4\pi r_{2}^2}

So the relative distance between both stars will be:

\left(\frac{d_{1}}{d_{2}}\right)^{2}=\frac{L_{1}}{L_{2}} (3)

The Boltzmann Law says, L=A\sigma T^{4} (4)

  • σ is the Boltzmann constant
  • A is the area
  • T is the temperature
  • L is the absolute luminosity

Let's put (4) in (3) for each star.

\left(\frac{d_{1}}{d_{2}}\right)^{2}=\frac{A_{1}\sigma T_{1}^{4}}{A_{2}\sigma T_{2}^{4}}

As we know both stars have the same size we can canceled out the areas.

\left(\frac{d_{1}}{d_{2}}\right)^{2}=\frac{T_{1}^{4}}{T_{2}^{4}}

\frac{d_{1}}{d_{2}}=\sqrt{\frac{T_{1}^{4}}{T_{2}^{4}}}

\frac{d_{1}}{d_{2}}=\sqrt{\frac{T_{1}^{4}}{T_{2}^{4}}}

\frac{d_{1}}{d_{2}}=0.36

I hope it helps!

5 0
3 years ago
Two forces are acting on an object. The first force has magnitude F1=33.4 N and is pointing at an angle of θ1=23.8 clockwise fro
marishachu [46]

Answer:

Fe= 28.2 N : Magnitude of the equilibrant (Fe)

β = 18.34° , clockwise from the positive x axis

Explanation:

Concept of the equilibrant

It is called equilibrant  to a force with the same magnitude and direction as the resulting one (in case it is non-zero) but in the opposite direction. Adding vectorially to all the forces (that is to say the resulting one) with the equilibrant you get zero

To solve this problem we decompose the forces given into x-y components to find the resulting force:

Look at the attached graphic

F₁= 33.4 N  , θ₁=23.8° clockwise from the positive y axis (y+)

F₁x= 33.4 *sin23.8° = 13.48 N

F₁y= 33.4 *cos23.8° =30.6 N

F₂=46.1 N ,  θ₂=28.8 counterclockwise from the negative x axis (x-)

F₂x= -46.1 *cos28.8° = -40.4 N

F₂y=  -46.1 *sin28.8° =  -22.2 N

Components of the resultant in x-y R(x,y)

Rx= 13.48 N -40.4 N = - 26.92 N

Ry= 30.6 N  -22.2 N =  + 8.4 N

Components of the equilibrant in x-y Fe(x,y)

Fex= +26.92 N

Fey=  - 8.4 N

Magnitude of the equilibrant (Fe)

F_{e} = \sqrt{(F_{ex})^{2}+{(F_{ey})^{2}  }

F_{e} = \sqrt{(26.92)^{2}+(8.4)^{2}  }

Fe= 28.2 N

Angle the equilibrant makes with the x axis ( β)

\beta = tan^{-1} (\frac{F_{ey} }{F_{ex} } )

\beta = tan^{-1} (\frac-8.4 }{26.92 } )

β = -18.34°                  

β = 18.34° , clockwise from the positive x axis

8 0
3 years ago
Other questions:
  • The electron beam inside a television picture tube is 0.40 {\rm mm} in diameter and carries a current of 50 {\rm \mu A}. This el
    15·1 answer
  • A current in a secondary coil is induced only if:
    14·1 answer
  • Help me... my science is horrible. I will mark brainliest, would prefer fast answer...
    6·1 answer
  • A car is moving 18 m/s to the eat. If it takes the car 5 seconds to reach a velocity of 19 m/s to the east, what is its accelera
    6·1 answer
  • An object started at
    10·1 answer
  • An object that completes 20 vibrations in 10 seconds has a frequency of
    15·1 answer
  • Find the torque required for the shaft to transmit 40 kW when (a) The shaft speed is 2500 rev/min. (b) The shaft speed is 250 re
    7·1 answer
  • A bus travels east for 3 km, then north for 4 km. What is its final displacement?
    11·1 answer
  • Remember to identify all your data, write the equation, and show your work.
    14·1 answer
  • The force of repulsion that two like charges exert on each other 5N. what will be if the distance between the charge is decrease
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!