(a)
is the wavelength in air of such a sound wave.
(b)
is the wavelength of this wave in tissue.
<u>Explanation:</u>
Frequency and wavelength can be related by the equation,
Velocity = Wavelength x Frequency

where,
v - velocity of light for all EM (electromagnetic) waves in vacuum
Given:
f - 4.50 MHz = 
a) To find the wavelength in air
We know,
Speed of sound in air = 343 m/s
Apply given frequency and speed of sound in air, we get

b) If the speed of sound in tissue is 1500 m/s, find the wavelength of this wave in tissue
Speed of sound in tissue, v = 1500 m/s

Answer:
intensity of the light that emerges from the three filters is 560.80 W/m²
Explanation:
Given data
intensity I = 1375 W/m2
angle 1 = 31.0°
angle 2 = 41.0°
to find out
intensity of the light that emerges from the three filters
solution
we know intensity of light pass 1st polarize = I/2 = 1375 / 2 = 687.5 W/m2
so intensity after 2nd polarize pass = I 1st cos²(θ)
I 2nd = 687.5 cos²(31) = 687.5 ( 0.836754) = 575.27 W/m2
and
intensity after 3rd polarize pass = I 2nd cos²(θ)
I 3rd = 575.27 cos²(41) = 575.27 (0.974839) = 560.80 W/m2
so that intensity of the light that emerges from the three filters is 560.80 W/m²
Answer:
hcbvdgsyyvjusvbxjxu usbsbhsi
Explanation:
ysggsghxuxgscsixigdvgsibxhdhshshjf
<span>electrons change momentum, some of them slough off photons. And some of those photons have energy in the visible light range of the electro-magnetic spectrum. </span>
Answer:
No
Explanation:
In order for the rope to be perfectly horizontal, there must be a vertical component in tension