Answer:
4m/s
Explanation:
due to newtons second law of motion
the accelerations that result when a 12-N net force is applied to a 3-kg object. A 3-kg object experiences an acceleration of 4 m/s/s.
HOPE THIS HELPS PLEASE MARK AS BRAINLIEST:)
Answer:

Explanation:
The magnitude of the electric field between two parallel conducting plates is defined as:

Here
is the potential difference between the plates and d its separation.
The electric potential energy is defined as the product between the particle's charge and the potential difference:

Solving for
and replacing in the electric field formula:

In this case we have a double charged ion, so
:

The initial velocity of the hoop is determined as 8.854 m/s.
<h3>Conservation of energy</h3>
The initial velocity of the hoop can be determined from the principle of conservation of energy.
Final potential energy = Initial kinetic energy
P.E = K.E
mgh = ¹/₂mv²
gh = ¹/₂v²
2gh = v²
√2gh = v
√(2 x 9.8 x 4) = v
8.854 m/s = v
Thus, the initial velocity of the hoop is determined as 8.854 m/s.
Learn more about initial velocity here: brainly.com/question/19365526
#SPJ1
Answer:
Newton's second law of motion can be formally stated as follows: The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.
Explanation:
Hope you get it right!