Answer:
(a). The kinetic energy stored in the fly wheel is 46.88 MJ.
(b). The time is 1.163 hours.
Explanation:
Given that,
Radius = 1.50 m
Mass = 475 kg
Power 
Rotational speed = 4000 rev/min
We need to calculate the moment of inertia
Using formula of moment of inertia

Put the value into the formula


(a). We need to calculate the kinetic energy stored in the fly wheel
Using formula of K.E

Put the value into the formula




(b). We need to calculate the length of time the car could run before the flywheel would have to be brought backup to speed
Using formula of time



Hence, (a). The kinetic energy stored in the fly wheel is 46.88 MJ.
(b). The time is 1.163 hours.
The total force that the SUV exerts is:
F = 2000 kg * 3 m/s^2
F = 6000 N
Since a resisting force amounting to 1500 N is exerted,
then the force exerted by the SUV tires is:
F tire = 6000 N – 1500 N
F tire = 4500 N
Answer:
The average velocity is 7.5 km/h
Explanation:
Let's convert minutes to hours so our answer can be given in a common units of km/hour:
12 minutes = 12/60 hours = 0.2 hours
Now we estimate the average velocity calculating the distance travelled over the time it took:
1.5 / 0.2 km/h = 7.5 km/h
Given data:
- It is a graphical display where the data is grouped in to ranges
- A diagram consists rectangles, whose area is proportional to frequency of a variable and whose width is equal to the class interval.
- It is an accurate representation of the distribution of numerical data.
<em>From Figure:</em>
Each box in the graph (small rectangle box) is assumed to be one download. So, in the graph the time between 8 p.m to 9 p.m, the number of downloads are 8.75 approximately (because the last box is incomplete, therefore 8 complete boxes and 9th is more than half).
<em>So, We conclude that the total number of downloads are approximately 9 in the time span of 8 p.m. to 9 p.m.</em>