1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Licemer1 [7]
3 years ago
14

The kinetic energy of a ball with a mass of 0.5 kg and a velocity of 10 m/s isJ.

Physics
1 answer:
inysia [295]3 years ago
3 0

We know,

K.E. = 1/2 mv²

K.E. = 1/2 (0.5)(10)²

K.E. = 1/2 * 50

K.E. = 25 Kgm/s

You might be interested in
Two large thin metal plates are parallel and close to each other. On their inner faces, the plates have excess surface charge of
wariber [46]

Answer:

For left = 0  N/C

For right = 0  N/C

At middle = -7.6836 * 10^{-11} \vec{i}  N/C

Explanation:

Given data :-

б =6.8 * 10^{-22} C/ m²

Considering the two thin metal plates to be non conducting sheets of charges.

Electric field is given by

E = \frac{\sigma }{2\varepsilon }

1) To the left of the plate

\vec{E}= (\frac{\sigma }{2\varepsilon })(-\vec{i})+  (\frac{\sigma }{2\varepsilon })(\vec{i})   = 0 N/C.

2) To the right of them.

\vec{E}= (\frac{\sigma }{2\varepsilon })(-\vec{i})+  (\frac{\sigma }{2\varepsilon })(\vec{i})   = 0 N/C.

3) Between them.

\vec{E}= (\frac{\sigma }{2\varepsilon })(-\vec{i})+  (\frac{\sigma }{2\varepsilon })(-\vec{i}) = (\frac{\sigma }{\varepsilon })(-\vec{i}) = -\frac{6.8 * 10^{-22} }{8.85 * 10 ^{-12} }  \vec{i} =   -7.6836 * 10^{-11} \vec{i} N/C

5 0
3 years ago
Light incident upon a pane of glass slows down in passing through the glass, Does it emerge at a slower speed or at its initial
Simora [160]

Answer:

It will emerge at its initial speed not a slower speed.

Explanation:

It will emerge at the initial speed because the medium at the point of emergence is the same as the medium before incidence.

Light moves at a constant speed in any particular medium. Hence, the speed of light in air is constant in air and the speed of light in glass is constant in glass.

4 0
3 years ago
Blood in a carotid artery carrying blood to the head is moving at 0.15 m/s when it reaches a section where plaque has narrowed t
sp2606 [1]

Answer:

26.9 Pa

Explanation:

We can answer this question by using the continuity equation, which states that the volume flow rate of a fluid in a pipe must be constant; mathematically:

A_1 v_1 = A_2 v_2 (1)

where

A_1 is the cross-sectional area of the 1st section of the pipe

A_2 is the cross-sectional area of the 2nd section of the pipe

v_1 is the velocity of the 1st section of the pipe

v_2 is the velocity of the 2nd section of the pipe

In this problem we have:

v_1=0.15 m/s is the velocity of blood in the 1st section

The diameter of the 2nd section is 74% of that of the 1st section, so

d_2=0.74d_1

The cross-sectional area is proportional to the square of the diameter, so:

A_2=(0.74)^2 A_1=0.548 A_1

And solving eq.(1) for v2, we find the final velocity:

v_2=\frac{A_1 v_1}{A_2}=\frac{A_1 (0.15)}{0.548 A_1}=0.274 m/s

Now we can use Bernoulli's equation to find the pressure drop:

p_1 + \frac{1}{2}\rho v_1^2 = p_2 + \frac{1}{2}\rho v_2^2

where

\rho=1025 kg/m^3 is the blood density

p_1,p_2 are the initial and final pressure

So the pressure drop is:

p_1 - p_2 = \frac{1}{2}\rho (v_2^2-v_1^2)=\frac{1}{2}(1025)(0.274^2-0.15^2)=26.9 Pa

8 0
3 years ago
Suppose astronomers find an earthlike planet that is twice the size of Earth (that is, its radius is twice the radius of Earth).
JulijaS [17]

Answer:

4 times the mass of Earth

Explanation:

M_1 = Mass of Earth

M_2 = Mass of the other planet

r = Radius of Earth

2r = Radius of the other planet

m = Mass of object

The force of gravity on an object on Earth is

F=\frac{GM_1m}{r^2}

The force of gravity on an object on the other planet is

F=\frac{GM_2m}{(2r)^2}

As the forces are equal

\frac{GM_1m}{r^2}=\frac{GM_2m}{(2r)^2}\\\Rightarrow M_1=\frac{M_2}{4}\\\Rightarrow M_2=4M_1

So, the other planet would have 4 times the mass of Earth

6 0
3 years ago
Calculate the potential energy stored in a metal ball of a mass of 80 kg kept at a height of 15m from the earth surface.What wil
True [87]

Answer:

39200 joules

the potential energy will be zero

Explanation:

we know that potential energy is found by multiplying mass, acceleration due to gravity and height from the Earth's surface

so it will be

potential energy= mgh

80x9.8x15

= 39200 joules

the potential energy of the mental ball will be zero when kept on the Earth's surface because the height from the Earth's surface will be zero and zero multiplied to any number is zero only

I have a doubt with the second one, this is what I think it is. Consult your teacher if you think my answer for the second one is wrong

6 0
3 years ago
Read 2 more answers
Other questions:
  • Consider a container of oxygen gas at a temperature of 23°C that is 1.00 m tall. Compare the gravitational potential energy of a
    15·1 answer
  • A goldfish is swimming at 3.20 cm/stoward the front wall of a rectangular aquarium. What is theapparent speed of the fish as mea
    14·1 answer
  • A stone is thrown vertically upward with a speed of 18 m/s. (a) How long does it take the stone to reach a height of 11 m? (b) h
    10·1 answer
  • Earth is the only planet able to support what
    13·2 answers
  • A large sheet of charge has a uniform charge density of 9  μCm2. What is the electric field due to this charge at a point just
    6·1 answer
  • The diagram shows how air circulation forms a sea breeze on a warm day. A beach meets the sea in the middle of the image with a
    10·2 answers
  • The _______ is responsible for determining the frequency of vibration of the air column in the tube within a wind instrument.
    10·1 answer
  • Using the periodic table, predict the formulas of stable ionic compounds. Select THREE that are correct.
    13·2 answers
  • We only see objects because they absorb light. <br> True or False?
    9·1 answer
  • 13. Austin rode his bike 10 m/s for two minutes. How far did he travel? A. 200 meters B. 1200 meters C. 1000 meters D. 20 meters
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!