Given Information:
Voltage of circuit A = Va = 208 Volts
Current of circuit A = Ia = 40 Amps
Voltage of circuit B = Vb = 120 Volts
Current of circuit B = Ib = 20 Amps
Required Information:
Ratio of power = Pa/Pb = ?
Answer:
Ratio of power = Pa/Pb = 52/15
Explanation:
Power can be calculated using Ohm's law
P = VI
Where V is the voltage and I is the current flowing in the circuit.
The power delivered by circuit A is
Pa = Va*Ia
Pa = 208*40
Pa = 8320 Watts
The power delivered by circuit B is
Pb = Vb*Ib
Pb = 120*20
Pb = 2400 Watts
Therefore, the ratio of the maximum power delivered by circuit A to that delivered by circuit B is
Pa/Pb = 8320/2400
Pa/Pb = 52/15
T = 2 * pie √(L/g)
so, if length is increased by 9
then time period is increased by √9 = 3
hope it helped :)
The calculated coefficient of kinetic friction is 0.33125.'
The rate of kinetic friction the friction force to normal force ratio experienced by a body moving on a dry, uneven surface is known as k. The friction coefficient is the ratio of the normal force pressing two surfaces together to the frictional force preventing motion between them. Typically, it is represented by the Greek letter mu (). In terms of math, is equal to F/N, where F stands for frictional force and N for normal force.
given mass of the block=10 kg
spring constant k= 2250 Nm
now according to principal of conservation of energy we observe,
the energy possessed by the block initially is reduced by the friction between the points B and C and rest is used up in work done by the spring.
mgh= μ (mgl) +1/2 kx²
10 x 10 x 3= μ(600) +(1125) (0.09)
μ(600) =300 - 101.25
μ = 198.75÷600
μ =0.33125
The complete question is- A 10.0−kg block is released from rest at point A in Fig The track is frictionless except for the portion between point B and C, which has a length of 6.00m the block travels down the track, hits a spring of force constant 2250N/m, and compresses the spring 0.300m form its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between point Band (C)
Learn more about kinetic friction here-
brainly.com/question/13754413
#SPJ4
Answer:
1.57772 m
Explanation:
M = Mass of actor = 84.5 kg
m = Mass of costar = 55 kg
v = Velocity of costar
V = Velocity of actor
= Intial height of actor = 4.3 m
g = Acceleration due to gravity = 9.81 m/s²
As the energy of the system is conserved

As the linear momentum is conserved

Applying conservation of energy again

The maximum height they reach is 1.57772 m