<u>Answer:</u>
<h2>
All the waves are pertubations that propagate (transport) energy.</h2><h2>
</h2>
Nevertheless, they have some differences:
1. Light waves are<u> electromagnetic waves</u>, while sound and water waves are <u>mechanical waves</u>, this is the first and principal difference.
2. Electromagnetic waves can<u> propagate in vacuum</u> (they do not need a medium or material), but mechanical waves obligatory need a material to propagate
3. Light waves are always <u>transversal waves</u>, this means <u>the oscillatory movement is in a direction that is perpendicular to the propagation</u>; but mechanical waves may be both: <u>longitudinal waves</u> (the oscillation occurs in the same direction as the propagation) or transversal waves.
4. Electromagnetic waves propagates at a <u>constant velocity</u> (Light velocity) while the velocity of mechanical waves will depend on the type of wave and the <u>density</u> of the medium or material.
5. <u>Mechanical waves</u> are characterized by the regular variation of a single magnitude, while <u>electromagnetic waves</u> are characterized by the variation of two magnitudes: the electric field and the magnetic field
6. <u>Water waves</u> are 2-dimensional waves, while the <u>light and the sound</u> are tridimensional spherical waves
7. Light waves <u>transports energy in the form of </u><u>radiation</u>, while mechanical waves t<u>ransport energy with </u><u>material</u>
Answer: B
Explanation:
It's not the time it took to heat the substance, so that rules out A and C.
This means that we only have to choose between
B. the area of contact
D. the area of the substances
(since everything else in each of those answers are the same)
Area of contact matters more (e.g. an object with greater surface area is exposed to the air more, will lose/gain heat quicker than an object with less surface area).
The answer would be acceleration.
A vibrating stretched string has nodes or fixed points at each end. The string will vibrate in its fundamental frequency with just one anti node in the middle - this gives half a wave.

Rearranging for the wavelength



Therefore the longest wavelength standing wave that it can support is 14m
Answer:
R = 7 [amp]
Explanation:
To solve this problem we must use ohm's law which tells us that the voltage is equal to the product of the current by the resistance. In this way, we have the following equation.
V = I*R
where:
V = voltage = 49 [V] (units of volts)
I = current = 7 [amp] (amperes)
R = resistance [ohms]
Now clearing R.
R =V/I
R = 49/7
R = 7 [amp]