Answer:
Explanation:
Time to cover first 100 km = 1 hour.
time remaining = 3.15 - 1 = 2.15 hour .
Time to cover next 42 km = 1 hour .
Time remaining = 2.15-1 = 1.15 hour.
Distance to be covered = 310 - 142
= 168 km
least speed needed = distance remaining / time remaining
= 168 / 1.15
= 146.08 km / h .
In the given statement: "<span>Since monsoons are storms that usually occur during a specific time of year in certain regions, you could not compare them to thunderstorms. </span>" is false. Therefore, among the given choices, the correct answer is B. False.
The angular speed of the device is 1.03 rad/s.
<h3>What is the conservation of angular momentum?</h3>
A spinning system's ability to conserve angular momentum ensures that its spin will not change until it is subjected to an external torque; to put it another way, the rotation's speed will not change as long as the net torque is zero.
Using the conservation of angular momentum

Here, = the system's angular momentum before the collision
= 0 + mv
= (0.005)(450)(0.752)
= 1.692 kgm²/s
The moment of inertia of the system is given by
I = 2(M₁R₁² + M₂R₂²)+ mR₁²
= 2[(1.2)(0.8)² +(0.5)(0.3)²]+0.005(0.8)²
= 1.6292 kgm²
Here, = Iω
So,
1.692 = 1.6292(ω)
ω = 1.03 rad/s
To know more about the conservation of angular momentum, visit:
brainly.com/question/1597483
#SPJ1
Answer:
L = 0.635m
Explanation:
This problem involves the concept of stationary waves in pipes. For pipes closed at one end,
The frequency f = nv/4L for n = 1,3,5....n
For pipes open at both ends
f = nv/2L for n = 1,2,3,4...n
Assuming the pipe is closed at one end and that velocity of sound is 343m/s in air. If we are right we will obtain a whole number for n.
The film solution can be found in the attachment below.
The question doesn't give us enough information to answer.
The answer depends on the mass of the object, how long the force
acts on the object, the OTHER forces on the object, and whether the
object is free to move.
-- If you increase the force with which you push on a brick wall,
the amount of work done remains unchanged, namely Zero.
-- If you push on a pingpong ball with a force of 1 ounce for 1 second,
the ball accelerates substantially, it moves a substantial distance, and
so the work done is substantial.
-- But if you push on a battleship, even with a much bigger force ...
let's say 1 pound ... and keep pushing for a month ... the ship accelerates
microscopically, moves a microscopic distance, and the work done by
your force is microscopic.