1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iris [78.8K]
2 years ago
5

VP 3.12.1 Part APart complete A cyclist going around a circular track at 10.0 m/s has a centripetal acceleration of 5.00 m/s2. W

hat is the radius of the curve? Express your answer with the appropriate units. R = 20.0 m Previous Answers Correct VP 3.12.2 Part B A race car is moving at 40.0 m/s around a circular racetrack of radius 265 m. Calculate the period of the motion. Express your answer in seconds. T = nothing s Request Answer Part C Calculate the car’s centripetal acceleration.
Physics
1 answer:
viktelen [127]2 years ago
4 0

Answer:

A) r = 20.0 m

B) T = 41.6 s

C) = 6.1 m/s²

Explanation:

A)

  • The centripetal acceleration is the one that explains that even though the cyclist is moving at a constant speed, his velocity is changing the direction all the time, keeping him around a circle.
  • This acceleration can be expressed as follows:

        a_{c} =\frac{v^{2}}{r} = \frac{(10.0m/s)^{2}}{r} = 5.00 m/s2  (1)

  • Solving for r:

       r = \frac{v^{2}}{a_{c} } = \frac{(10.0m/s)^{2}}{5.00m/s2} = 20.0 m  (2)

B)

  • We can apply the definition of linear velocity, remembering that the period is the time needed to complete an entire circle (T).
  • The arc around a circumference (the distance traveled) , is just 2*π*r, so applying the definition of linear velocity, we can write the following expression:

        v = \frac{\Delta s}{\Delta t} = \frac{2*\pi*r}{T} (3)

  • Solving  for T:

       T = \frac{\Delta s}{v} = \frac{2*\pi*r}{v} = \frac{2*\pi*265m}{40.0m/s} =41.6 s  (4)

C)

  • The centripetal acceleration of the car from B) can be found as follows:

        a_{c} =\frac{v^{2}}{r} = \frac{(40.0m/s)^{2}}{265m} = 6.1 m/s2   (5)

You might be interested in
A device has power -2 D . The device is
slavikrds [6]

Answer:

b.

Explanation:

-vesign shows the lens is <em><u>C</u></em><em><u>O</u></em><em><u>N</u></em><em><u>C</u></em><em><u>A</u></em><em><u>V</u></em><em><u>E</u></em>

<em><u>f</u></em><em><u>=</u></em>1/power

7 0
3 years ago
A flutist assembles her flute in a room where the speed of sound is 342m/s . When she plays the note A, it is in perfect tune wi
USPshnik [31]

Answer:

a.3Hz

b.0.0034m

Explanation:

First, we know the flute is an open pipe, because open pipe as both end open and a close organ pipe as only one end close.

The formula relating the length and he frequency is giving as

f=\frac{nv}{2l}\\.

a.we first determine the length of the flute at the fundamental frequency i.e when <em>n</em>=1 and when the speed is in the 342m/s

Hence from

f=\frac{nv}{2l}\\\\l=\frac{342}{2*440}\\ l=0.389m\\.

since the value of the length will remain constant, we now use the value to determine the frequency when the air becomes hotter and the speed becomes 345m/s.

f=\frac{nv}{2l} \\f=\frac{345}{2*0.389}\\f=443.4Hz

Hence the require beat is

B=/f_{1}-f_{2}/\\B=/440-443/\\B=3Hz.

b. since the length is dependent also on the speed and frequency, we determine the new length when she plays with a fundamental frequency when the speed of sound is 345m/s

using the formula

L_{new}=\frac{v}{2f}\\\\L_{new}=\frac{345}{2*440}\\\\L_{new}=0.39204

Now to determine the extension,

L_{extend}=L_{new}-L_{old}\\L_{extend}=0.39204- 0.38864\\L_{extend}=0.0034m\\

4 0
3 years ago
If two people are running at the same speed in the same direction. One person is one meter ahead of the other. The person in fro
Gre4nikov [31]

Answer:yes

Explanation:

5 0
2 years ago
What type of atom is K2CO3
My name is Ann [436]
<span>Potassium carbonate (K2C03) is white salt and is often </span>found damp. It is soluble in water which makes a strong concoction. Hope this helps.
4 0
2 years ago
Read 2 more answers
A spearfisher stands in shallow water and sees a fish a few feet in front of her. She throws her spear directly toward the posit
DENIUS [597]

Answer:

the spear will end up above the fish relative to the actual position of the fish.

Explanation:

due to refraction of light coming from the fish the fish will appear slightly above from its real position

So due to this refraction the spearfisher will throw the spear directly at the image of the fish due to which it will not reach the position of fish but it will reach the position above the fish.

So here we can say that the spear will end up above the fish relative to the actual position of the fish

5 0
3 years ago
Other questions:
  • Which of the following is a result of a change in pressure? A. Frost wedging B. Chemical feathering C. Oxidation D. Exfoliation
    9·1 answer
  • Which statement explains how an ionic bond and a covalent bond differ?
    8·2 answers
  • Juggles the clown stands on one end of a teeter-totter at rest on the ground. Bangles the clown jumps off a platform 2.4 m above
    9·1 answer
  • A cattle train left Miami and traveled toward New York. 14 hours later a diesel train left traveling at 45 km/h in an effort to
    5·1 answer
  • Find the speed for a star in which this line appears at wavelength 120.2 nm . Express your answer to three significant figures a
    15·1 answer
  • A football player kicks a ball with a mass of 0.42 kg. The average acceleration of the football was 14.8 m/s².
    15·2 answers
  • A fence 8 ft high​ (w) runs parallel to a tall building and is 24 ft​ (d) from it. Find the length​ (L) of the shortest ladder t
    8·1 answer
  • A hilly road is spiral in shape.​
    8·1 answer
  • A 0.208 kg particle with an initial velocity of 1.26 m/s is accelerated by a constant force of 0.766 N over a distance of 0.195
    10·1 answer
  • Assume that g is 10 N/kg and that air resistance and other
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!