Answer:
Sample Response: No image will be formed because the rays will not converge to or diverge from a common point.
Explanation:
The correct answer would be B. The first level contains two and the second level contains six holding a total of eight, the reason eight aren't just in one row is because only two fit in the first row.
Answer:
The forces of attraction are weak in gases.
Explanation:
Solid-state objects are presented as bodies in a definite form; their atoms are often intertwined into narrowly defined structures, which gives them the ability to withstand forces without apparent deformation. They are generally described as hard as well as resistant, and in them, the forces of attraction are greater than those of repulsion. In the crystalline solids, the presence of small intermolecular spaces gives way to the intervention of the bond forces, which place the cells in geometric forms.
Solid – In a solid, the attractive forces keep the particles together tightly enough so that the particles do not move past each other. Their vibration is related to their kinetic energy. In the solid the particles vibrate in place.
Liquid – In a liquid, particles will flow or glide over one another, but stay toward the bottom of the container. The attractive forces between particles are strong enough to hold a specific volume but not strong enough to keep the molecules sliding over each other.
Gas – In a gas, particles are in continual straight-line motion. The kinetic energy of the molecule is greater than the attractive force between them, thus they are much farther apart and move freely of each other. In most cases, there are essentially no attractive forces between particles. This means that a gas has nothing to hold a specific shape or volume.
<span>A chemical change occurs when the bonds between atoms and molecules change, and a new substance forms. This chemical change may or may not be permanent and may or may not physically affect an object. However, it always affects the chemical composition.</span>
Answer:
Velocity (magnitude) is 98.37 m/s
Explanation:
We use the vertical component of the initial velocity, which is:

Using kinematics expression of vertical velocity (in y direction) for an accelerated motion (constant acceleration, which is gravity):

Now we need to find
as a function of
. We use the horizontal velocity, which is always the same as follow:

We know the angle at 3 seconds:

Substitute
in
and then solve for 

With this expression we go back to the kinematic equation and solve it for initial speed
