Let's break the question into two parts:
1) The force needed in Ramp scenario.
2) The effort force needed in the lever scenario.
1. Ramp Scenario: In an incline, the only component of cart's weight(
mg) that is in the direction of motion is
. Therefore the effort force in this case must be equal or greater than
.
Now we need to find

.

is the angle between the incline of the ramp and the ground.
Since the height is
5m and the length of the ramp is
8m, 
would be
5/8 or 0.625. Now that you have

, mutiple it with
mg.
=> m*g*

= 20 * 10 * 5 / 8. (Taking g = 10 m/s² for simplicity) = 125N
Therefore, the minimum Effort force you would require in this case is
125N.
2. Lever Scenario:
Just apply "moment action" in this case, which is:


= ?

= mg = 20 * 10 = 200N

= 10m

= 1m
Plug-in the values in the above equation:

= 200/10=
20NAs 20N << 125N, the best choice is to use lever.
Answer:
noble gases are basically a group of gases that are similar in their chemical compounds, theres six of them : helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), and the radioactive radon (Rn).
~batmans wife dun dun dun.....
Answer:
Your pinball machine was built using two kinds of simple machines: a lever and an inclined plane. The lever shot the marble to the top of the box with lots of force. The inclined planes made the marble wind its way down to the bottom.
Answer:
2.08 s
Explanation:
We are given that
Speed,v=50mph=73.3ft/s
1 mile=5280 feet
1 hour=3600 s
Distance,d=461 ft
t=2.5 s
v'=60 mph=88 ft/s
We have to find the perception reaction time.
Perception reaction distance=


