Answer:2-liver because it doesnt belong to digestive system
3-esophagus because it doesnt belong to the circulatory system
4-heart because it doesnt belong to the nervous system
5-skull because it doesnt belong to the endocrine system
Explanation:
Answer: genotype: Ee phenotype: two small eyes.
genotype: RR' phenotype: pink eyes
genotype: GB phenotype: green and blue splotches
genotype: cc phenotype: straight
genotype: Tt phenotype: has tail
genotype: Ss phenotype: sharp teeth
genotype: FF' phenotype: three toes
genotype: ww phenotype: white
genotype: YY phenotype: pointy
genotype: nn phenotype: two ears
genotype: Ll phenotype: long
Explanation: hope this helps (the uppercase letters are dominant genes. the lowercase letter are recessive genes. for a recessive gene to show up in a phenotype you need 2 lower case letters such as cc or ss. for a dominant gene to show up in phenotype you need either 1 or 2 uppercase letters such as Cc or SS. Codominant genes present both colors in the phenotypes i.e. a brown and white cow. incomplete dominance is when neither gene is dominant so a mix of the 2 are present in the phenotype i.e. a pink rose. A regulatory gene controls the expression of a gene
Answer:
Explanation:
2. a [CO3 2-][H3O+] / [H2O][HCO3-
b. [H2PO4-][H3O+]/[H3PO4][H2O]
Let's identify first the phases of matter inside each of those beakers. The first beaker on the left has a compact shape and has its own volume. So, that must be solid. The middle beaker has a compact shape but it takes the shape of its container. So, that must be liquid. The third beaker on the right is gas because the molecules are far away from each other.
After identifying each states, let's investigate the energy for phase change. Let's start with the arrows pointing to the right. The first arrow to the right is a phase change from solid to liquid. The intermolecular forces in a solid is the strongest among the three phases of matter. So, you would need an input of energy to break them apart into liquid. The same is true for the phase change from liquid to gas. Therefore, all the arrows pointing to the right require an input of energy.
The reverse arrows pointing to the left needs to release energy. The molecules in the gas state are free such that they can travel from one point to another easily. They have the highest amount of energy. So, if you want the molecules to come closer together, you need to remove the energy to keep them in place. Therefore, the arrows pointing to the right require removal of energy.