Osmosis deals only with D. Water. Diffusion and Osmosis are relatively the same thing besides the fact that water is largely incorporated with the osmosis.
Answer:
Mo(CO)5 is the intermediate in this reaction mechanism.
Explanation:
The reaction mechanism describes the sequence of elementary reactions that must occur to go from reactants to products. Reaction intermediates are formed in one step and then consumed in a later step of the reaction mechanism.
In this reaction mechanism, Mo(CO)5 is the product of 1st reaction and then it is used as a reactant in 2nd reaction. So, Mo(CO)5 is the reaction intermediates.
The overall balanced equation would be,
Mo(CO)6 + P(CH3) ↔ CO + Mo(CO)5 + P(CH3)3
Answer:
54.4 mol
Explanation:
the equation for complete combustion of butane is
2C₄H₁₀ + 13O₂ ---> 8CO₂ + 10H₂O
molar ratio of butane to CO₂ is 2:8
this means that for every 2 mol of butane that reacts with excess oxygen, 8 mol of CO₂ is produced
when 2 mol of C₄H₁₀ reacts - 8 mol of CO₂ is produced
therefore when 13.6 mol of C₄H₁₀ reacts - 8/2 x 13.6 mol = 54.4 mol of CO₂ is produced
therefore 54.4 mol of CO₂ is produced
So if the compound has the smallest gram formula mass it has the highest percentage composition by mass of strontium
The Relative Formula Mass of NaH2PO4 is 120 g/mol
Therefore, the number of moles = 6.6/120
= 0.055 moles of NaH2PO4 which is also equal to the number of moles of H2PO4.
[H2PO4-] = Number of moles oof H2PO4-/Volume of the solution in L
= 0.055/ ( 355 ×10^-3)
= 0.155 M
Na2HPO4 undergoes complete dissociation as follows;
Na2HPO4 (aq)= 2Na+ (aq) + HPO4^2- (aq)
1 mole of Na2HPO4 = 142 g/mol
Therefore; number of moles = 8.0/142
= 0.0563 moles
[HPO4 ^-2] is given by no of moles HPO4^2- /volume of the solution in L
= 0.0563/(355×10^-3)
= 0.1586 M
Both H2PO4^2- and HPO4^2- are weak acids the undergoes partial dissociation
Ka of H2PO4- = 6.20 × 10^-8
[H+] =Ka*([H2PO4-]/[HPO4(2-)]
= (6.20 ×10^-8)×(0.155/0.1586)
= 6.059 ×10^-8 M
pH = - log[H+]
= - log (6.059×10^-8)
= 7.218