Answer:
t = 2.13 10-10 s
, d = 6.39 cm
Explanation:
For this exercise we use the definition of refractive index
n = c / v
Where n is the refraction index, c the speed of light and v the speed in the material medium.
The refractive indices of ice and crown glass are 1.13 and 1.52, respectively, therefore the speed of the beam in the material medium is
v = c / n
As the beam strikes perpendicularly, the beam path is equal to the distance of the leaves, there is no refraction, so we can use the uniform motion relationships
v = d / t
t = d / v
t = d n / c
Let's look for the times on each sheet
Ice
t₁ = 1.4 10⁻² 1.31 / 3 10⁸
t₁ = 0.6113 10⁻¹⁰ s
Crown glass (BK7)
t₂ = 3.0 10⁻² 1.52 / 3.0 10⁸
t₂ = 1.52 10⁻¹⁰ s
Time is a scalar therefore it is additive
t = t₁ + t₂
t = (0.6113 + 1.52) 10⁻¹⁰
t = 2.13 10-10 s
The distance traveled by this time in a vacuum would be
d = c t
d = 3 10⁸ 2.13 10⁻¹⁰
d = 6.39 10⁻² m
d = 6.39 cm
Answer:

Explanation:
We are given that
Current in wire=40 A
Magnetic field=
T( vertically downward)
We have to find the resultant magnitude of the magnetic field 29 cm above the wire and 29 cm below the wire.
According to Bio-Savart law, the magnetic field exerted by the wire at distance R is given by

We have R=29 cm=
1 m=100 cm
Substitute the values in the given formula

The resultant magnetic field is given by

Substitute the values then we get


The resultant magnitude of magnetic field is same above and below the wire as it is at same distance.
The resultant magnitude of the magnetic field 29 cm below the wire=
Hence, the resultant magnitude of the magnetic field 29 cm above the wire=
<span>Saturn is the sixth planet from the Sun and the second-largest in the Solar System, after Jupiter. It is a gas giant with an average radius about nine times that of Earth.</span>
So that there isn't too much force restricting the structure of the circus and cause disaster
The more energy orbits the radiation jumps the more energy it has. So if the frequency stays the same each time then the wavelength will get longer if there is more energy.
In this case the situation in which the radiation jumps the most energy orbits is when: the electron jumps from the fourth orbit to the first orbit. This will emit the longest wavelength