<h3>Answer;</h3>
<em>A wave </em>
<em><u>A wave</u></em> is any form of a disturbance that carries energy from one place to another through a matter and space
<h3>
Explanation;</h3>
- Waves carry energy from one point, the source to another point or place. The transmission of a wave may occur through the space or through a material medium.
- Electromagnetic waves are those waves whose transmissions occurs through the space, they do not require material medium for transmission,for example, radio waves, while mechanical waves are those that require material medium for transmission, for example sound waves.
- The energy of wave depends on the frequency of the wave and the wavelength of that particular wave.
For a flat coil of wire has an inductance of 40. 0 mh and a resistance of 6. 00 ω, the rate of energy being delivered is mathematically given as
P= 53 W
<h3>What rate is
energy being delivered by the
battery?</h3>
Generally, the equation for the Battery power is mathematically given as
P = I (dt)V
Therefore
P= 2.50 A * 21.2V
P= 53 W
In conclusion, rate of energy being delivered
P= 53 W
Read more about Energy
brainly.com/question/13439286
Answer:
a much larger slit, the phenomenon of Sound diffraction that slits for light.
this is a series of equally spaced lines giving a diffraction envelope
Explanation:
The diffraction phenomenon is described by the expression
d sin θ = m λ
Where d is the distance of the slit, m the order of diffraction that is an integer and λ the wavelength.
For train the diffraction phenomenon, the d / Lam ratio is decisive if this relation of the gap separation in much greater than the wavelength does not reduce the diffraction phenomenon but the phenomena of geometric optics.
The wavelength range for visible light is 4 10⁻⁷ m to 7 10⁻⁷ m. The wavelength range for sound is 17 m to 1.7 10⁻² m. Therefore, with a much larger slit, the phenomenon of Sound diffraction that slits for light.
When we add a second slit we have the diffraction of each one separated by the distance between them, when the integrals are made we arrive at the result of the interference phenomenon, a this is a series of equally spaced lines giving a diffraction envelope
When I separate the distance between the two slits a lot, the time comes when we see two individual diffraction patterns