Answer:
I(x) = 1444×k ×
I(y) = 1444×k ×
I(o) = 3888×k ×
Explanation:
Given data
function = x^2 + y^2 ≤ 36
function = x^2 + y^2 ≤ 6^2
to find out
the moments of inertia Ix, Iy, Io
solution
first we consider the polar coordinate (a,θ)
and polar is directly proportional to a²
so p = k × a²
so that
x = a cosθ
y = a sinθ
dA = adθda
so
I(x) = ∫y²pdA
take limit 0 to 6 for a and o to
for θ
I(x) =
y²p dA
I(x) =
(a sinθ)²(k × a²) adθda
I(x) = k
da ×
(sin²θ)dθ
I(x) = k
da ×
(1-cos2θ)/2 dθ
I(x) = k
×
I(x) = k ×
× (
I(x) = k ×
×
I(x) = 1444×k ×
.....................1
and we can say I(x) = I(y) by the symmetry rule
and here I(o) will be I(x) + I(y) i.e
I(o) = 2 × 1444×k ×
I(o) = 3888×k ×
......................2
It's important to know that diffraction gratings can be identified by the number of lines they have per centimeter. Often, more lines per centimeter is more useful because the images separation is greater when this happens. That is, the distance between lines increases.
<h2>Therefore, the answer is 2.</h2>
The kinetic energy of the tomato is :
K.E = 1/2 mv^2
K.E = 1/2 x 0.18 kg x 11 m/S^2
K.E = 0.99
Hope this helps
Answer:
A) F=-20.16×10⁹N
B) if the distance doubles, force is 4 times smaller.
Explanation:
q1=-28C
q2=5mC=0.005C
d=25cm=0.25m
Electrostatic force between charges: F=k×q1×q2/d², where k is a coefficient that has the value k=9 × 10⁹ N⋅m²⋅C^(-2) for air.
Thus:
F=9×10⁹×(-28)×0.005/0.25²
F=-20.16×10⁹N
The minus sign indicates attraction.
If distance doubles, d1=2×d, then we have 4d² at the denominator and the force is 4 times smaller.