Answer:
m = 0.4 [kg]
Explanation:
Weight is considered as a force and this is equal to the product of mass by gravitational acceleration.

where:
W = weight = 0.8 [N]
m = mass [kg]
g = gravity acceleration 2[N/kg]
Therefore:
![m=W/g\\m = .8/2\\m = 0.4 [kg]](https://tex.z-dn.net/?f=m%3DW%2Fg%5C%5Cm%20%3D%20.8%2F2%5C%5Cm%20%3D%200.4%20%5Bkg%5D)
Answer:
x = 7.14 meters
Explanation:
It is given that,
Current in wire 1, 
Current in wire 2,
Distance between parallel wires, r = 25 cm
Let at P point the net magnetic field equal to 0. The magnetic field at a point midway between the is given by :

Let the distance is x from wire 1. So,



x = 7.14 meters
So, the magnetic field will be 0 at a distance of 7.14 meters from wire 1. Hence, this is the required solution.
Answer:
The power expended by the car during the acceleration is 116.38KW
Explanation:
Power is a term that defines the rate at which energy is expended whenever work is done.
Power can be given as Force X velocity.
Force can be found using the formula:
F = mass X acceleration.
In this case,
F = 1100kg X 4.6m/s2
F = 5060 N
The final velocity, v of the car can be obtained from this formula:
v = u+ at
U = initial velocity = 0 (since the car started from rest)
a = acceleration = 4.6m/s2
t = time = 5 seconds
v = 0 + 4.6 X 5 = 23 m/s
Therefore, the power expended is 5060N X 23m/s=116,380W
The power expended by the car during the acceleration is 116.38KW
My teacher said 36m when I asked her
Answer:

Explanation:
Since the fly accumulated a positive charge of +73pC, it must have lost an equal number of negative charge of -73pC to the surface (because the housefly was neutral to begin with).
Therefore, to answer our question we have to ask ourselves <em>how many electrons combine to make -73pC of charge? </em>
The answer is since one electron carries a charge of
, the number
of electrons that make up -73pC
are


Thus, the housefly lost about 456 million electrons to the surface!