Divide it by avagardo's constant that should work as its the number of particles.
Molarity is defined as number of moles of solute in 1 L of solution.
Here, 0.1025 g of Cu is reacted with 35 mL of HNO_{3} to produced Cu^{2+} ions.
The balanced reaction will be as follows:
Cu+3HNO_{3}\rightarrow Cu(NO_{3})_{2}+NO_{2}+H_{2}O
From the above reaction, 1 mole of Cu produces 1 mole of Cu^{2+}, convert the mass of Cu into number of moles as follows:
n=\frac{m}{M}
molar mass of Cu is 63.55 g/mol thus,
n=\frac{0.1025 g}{63.55 g/mol}=0.0016 mol
Now, total molarity of solution, after addition of water is 200 mL or 0.2 L can be calculated as follows:
M=\frac{n}{V}=\frac{0.0016 mol}{0.2 L}=0.008 mol/L=0.008 M
Thus, molarity of Cu^{2+} is 0.008 M.
Answer:
PART A: 412.98 nm
PART B: 524.92 nm
Explanation:
The equation below can be used for a diffraction grating of nth order image:
n*λ = d*sinθ
Therefore, for first order images, n = 1 and:
λ = d*sinθ
.
The angle θ
can be calculated as follow:
tan θ
= 9.95 cm/15.0 cm = 0.663 and
θ
=
(0.663) = 33.56°
Thus: d =λ/sin θ
= 461/sin 33.56° = 833.97 nm
PART A:
For a position of 8.55 cm:
tan θ
= 8.55 cm/15.0 cm = 0.57 and
θ
=
(0.57) = 29.68°
Therefore:
λ =d*sin θ
= 833.97*sin 29.68° = 412.98 nm
PART B:
For a position of 12.15 cm:
tan θ
= 12.15 cm/15.0 cm = 0.81 and
θ
=
(0.81) = 39.01°
Therefore:
λ =d*sin θ
= 833.97*sin 39.01° = 524.92 nm
Answer: The layers of the rocks in one region of the parks are smooth and distinct, which are evidence of many, many years of deposition. The layers on the rocks are because of different deposition of sediments. Different sediments deposited over the rocks through wind, water and ice over the ages
Explanation: