The question is incomplete, here is the complete question:
The rate constant of a certain reaction is known to obey the Arrhenius equation, and to have an activation energy Ea = 71.0 kJ/mol . If the rate constant of this reaction is 6.7 M^(-1)*s^(-1) at 244.0 degrees Celsius, what will the rate constant be at 324.0 degrees Celsius?
<u>Answer:</u> The rate constant at 324°C is 
<u>Explanation:</u>
To calculate rate constant at two different temperatures of the reaction, we use Arrhenius equation, which is:
![\ln(\frac{K_{324^oC}}{K_{244^oC}})=\frac{E_a}{R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BK_%7B324%5EoC%7D%7D%7BK_%7B244%5EoC%7D%7D%29%3D%5Cfrac%7BE_a%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= equilibrium constant at 244°C = 
= equilibrium constant at 324°C = ?
= Activation energy = 71.0 kJ/mol = 71000 J/mol (Conversion factor: 1 kJ = 1000 J)
R = Gas constant = 8.314 J/mol K
= initial temperature = ![244^oC=[273+244]K=517K](https://tex.z-dn.net/?f=244%5EoC%3D%5B273%2B244%5DK%3D517K)
= final temperature = ![324^oC=[273+324]K=597K](https://tex.z-dn.net/?f=324%5EoC%3D%5B273%2B324%5DK%3D597K)
Putting values in above equation, we get:
![\ln(\frac{K_{324^oC}}{6.7})=\frac{71000J}{8.314J/mol.K}[\frac{1}{517}-\frac{1}{597}]\\\\K_{324^oC}=61.29M^{-1}s^{-1}](https://tex.z-dn.net/?f=%5Cln%28%5Cfrac%7BK_%7B324%5EoC%7D%7D%7B6.7%7D%29%3D%5Cfrac%7B71000J%7D%7B8.314J%2Fmol.K%7D%5B%5Cfrac%7B1%7D%7B517%7D-%5Cfrac%7B1%7D%7B597%7D%5D%5C%5C%5C%5CK_%7B324%5EoC%7D%3D61.29M%5E%7B-1%7Ds%5E%7B-1%7D)
Hence, the rate constant at 324°C is 
Answer:
In Cl
, the 2 is a subscript because it indicates there are 2 of the same elements. The Lewis structure would display it as Cl-Cl.
On the other hand, a superscript would indicate a specific charge.
All subscripts show the amount of the specific element there is.
An example would be O
or N
, they both show that there are 2 of the same elements.
If the subscript is outside a parenthesis such as
it indicates there are 2
molecules.
Answer:
It is a beta decay equation unknown
Explanation:
none
Answer:
See the answer below
Explanation:
Even though plants are rooted in the ground, they still move, exert <u>force,</u> and do<u> work</u>.
Plant cells have very strong cell walls that allow <u>pressure</u> to build up inside of the cell as water is absorbed. This pressure is called <u>turgor</u>.
When turgor pressure is high enough in a cell, the cell walls become <u>firm</u> and as a result, the cell becomes rigid and the plant is able to stand <u>tall</u> and<u> straight</u>.
When a plant does not get enough water, the turgor pressure inside of the cells <u>decreases.</u> A decrease in <u>pressure</u> pushing against the cell wall causes the cells to lose their <u>shape</u> and <u>shrink</u>. This causes the plant to begin to droop or <u>wilt</u>.
When the wilted plant gets enough water, the cells will become rigid again, and the plant will stand firm and straight once again.
Answer:
8.90
Explanation:
Density = mass ÷ volume
D = 222.50 g ÷ 25.00
= 8.9
The density of the unknown metal is 8.90.
Hope that helps.